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1 INTRODUCTION

The concept of a state in a mathematical formulation of a physical law dates back to Newton�s
Principia � where the �rst comprehensive formulation of some aspects of natural law was cast
in the form of di¤erential equations. The Hamiltonian formulation of mechanics in the early
19th century was the �rst explicit formulation of mechanics that could be regarded as a state
space formulation with the position and momentum variables forming the two state variables.
State space could not be said to be fully born until the Cartesian formulation of mechanics in
terms of symplectic variables in the 30�s. With the advent of the mathematical formulation of
quantum mechanics and quantum �eld theory during the last sixty years, the concept of state
has started to break down as the concept of a distinctive particle has begun to disappear to the
point where many physicists are inclined to think the particle concept has outlived its usefulness.
Without the concept of identity, there is a breakdown of distinctiveness that is needed to achieve
a state-based formulation of dynamics.

The picture of what a state is in the area of mathematical engineering is considerably better.
Post WWII, mathematics was used to pro�t in the �fties and sixties to formulate a modern
mathematical theory of systems theory (culminating in Zadeh�s book on systems theory [19]),
the Kalman solution of the estimation problem (Kalman �lter), the formulation of optimization
theory, as well as Bellman�s development of dynamic programming. The deeper and rigorous
understanding of the state concept has made all of this progress possible.

As engineering extends the state concept into new areas where the concept of state has not
previously been applied � it remains the task of mathematical engineering to help �clean up�
the formulation of what a state is so that it can be applied to wider and wider domains. In this
document, we take some concepts that were developed jointly by the author and W.L. Root to
extend state concept so it may be applied to new problem domains where new state concepts are
needed. At the heart of the de�nition of what a state is, there is an ordinary or partial di¤erential
equation that is used to formulate an explanation of the behavior of a physical system, and the
behavior of certain physical systems suggests new approaches to the state concept.1

State is of fundamental importance in systems theory. The exact description of state, as
can be seen in the literature (some mentioned below), depends on the system. However, state
condenses the past input and has a state transition property. A generic and general de�nition
of state is given by Kalman, Falb, and Arbib, [6]. Natural state is de�ned for input-output
systems. Natural state2 was de�ned by Root, [10], and it was shown that it inherits certain
continuity properties from the system. Natural state conforms to the Kalman-Falb-Arbib state.

We discussed the natural state of an input-output system in a previous paper, Root and
Serakos, [13], and examples were presented. The natural state is a mapping from future inputs
to future outputs. The natural state is speci�ed by the of past state and past input. The
relationship of the natural state to the Nerode equivalence classes, [7], and the more inclusive
behavioral approach of Willems, [18], is discussed in [13]. The natural state inherits many
properties from the input-output system. Some of these properties are discussed in [10] and
[13]. For instance, the natural state is continuous (respectively bounded) if the input-output

1John E. Gray, Electromagnetic and Sensor Systems Department, NSWCDD.
2The de�nition of natural state is provided in this report, De�nition 7.
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system is continuous (respectively bounded.) The mapping from past input to the natural state
space is continuous under speci�ed conditions. Conditions for the continuity of the natural state
trajectory and future state, based on past state, are presented in [13]. Also in [13], the natural
state of a nonlinear system, given by an integral operator, is computed, and it is shown that
for linear time-invariant systems, the natural state is equivalent to the traditional state.

In this report, we discuss further properties of the natural state. Hence, in a strong sense this
report is a continuation of [13]. There are two areas of emphasis: First, we de�ne the natural
state space as the set of all natural states that can be attained by an input-output system.
Considering a family of input-output systems with input and output spaces in common, a
map may be de�ned from this family to their natural state spaces. Of natural mathematical
interest is the invertibility of this natural state space map. For typical systems, the natural
state space map is invertible; hence, it may be a desirable property to extend to more general
systems. In this light, the invertibility of this map may be important in ruling out undesirable
or unintended properties in models of systems. An example is given that shows the natural
state space map need not be invertible, in particular when the system has �too much memory.�
Essentially the same example shows that reachability of one natural state from another can be
severely curtailed when there is too much memory. Finite memory or fading memory has been
mentioned in connection with a number of applications, such as Kalman �ltering, Anderson
and Moore, [1], systems theory, Root, [9], and stability, Serakos, [15]. A proposition giving
su¢ cient conditions for the invertibility of the natural state space map, which involves memory
length, is presented. A general class of input-output systems represented by integral operators
are considered to see when they are determined from their natural state space. A proposition,
also involving memory, is presented that gives su¢ cient conditions for reachability.

The second area has to do with natural state di¤erentiability properties. The properties are
patterned after the continuity properties in [13]. The results presented are di¤erentiability of
the natural state, di¤erentiability of the mapping from the past input to the natural state, and
di¤erentiability of the natural state trajectories. These results are inherited from appropriate
di¤erentiability properties of the input-output system. These di¤erentiability properties may
be contrasted with the work of Jakubczyk, [4], [5], and several of his references. In these papers
a full state space di¤erential equation is developed. For example, this is in contrast to the
di¤erentiability of individual natural state trajectories developed here.

The results presented in this report are original and the author�s, except as stated in the
foreword.
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2 PRELIMINARIES

The purpose of this chapter is to present the reader with a workable de�nition of an input-
output system and natural state. An input-output system is herein denoted (Y; F; U) where F
is a mapping from an input space U to an output space Y , and where U and Y are translation-
invariant spaces of vector-valued time functions. The vector values of these time functions
typically are <N ; N = 1; 2; � � � , but only need to be Banach spaces. Other spaces and mappings
related to (Y; F; U) will be introduced, but U and Y with whatever a¢ xes they carry always
refer to input and output spaces. Mappings from various input spaces to output spaces are
denoted either F or �, again with qualifying a¢ xes; � (or lower case Greek) is reserved for state
operators (i.e., for natural states).

The input and output space metrics are set up by seminorms referred to as �tted families
(FFs) of seminorms. Roughly speaking, �tted families work like Lp norms on time functions
with the additional feature that a time weighting can be incorporated so that the distant past
of an input or output time function may be de-emphasized. The notation kus;tks;t indicates the
norm (e.g., weighted Lp norm) of the input u over the interval of time (s; t]. Us;t is the space
of inputs over the same interval. FFs were initially described by Root, [9].

De�nition 1 ([9]) Let L = L(<; E) be a linear space of time functions from < into a Ba-
nach space E such that any translate of a function in L is also a function in L. Let N =
fk�ks;t ;�1 < s < t <1g be a family of seminorms on L satisfying the following conditions:

(1) For f1; f2 2 L, if f1(�) = f2(�) for s < � � t then kf1 � f2ks;t = 0.
(2) Let L� denote shift to the left by � . For all f 2 L, kL�fks��;t�� = kfks;t.
(3) Let r < s < t. Then for all f 2 L, kfks;t � kfkr;t.
(4) Let r < s < t. Then for all f 2 L, kfkr;t � kfkr;s + kfks;t.
(5) There exists 0 < � � 1 and K � 1 such that if 0 < t� r � � and r < s < t, then for

all f 2 L, kfkr;s � K kfkr;t.
The pair (L;N ) is called a FF of seminorms on L. The normed linear space formed from
equivalence classes of functions in L with norm k�ks;t is denoted As;t. The elements of As;t are
the equivalence classes determined by: f � g, f; g 2 L if and only if kf � gks;t = 0. They are
denoted us;t, ys;t, etc. The set fAs;tg, �1 < s < t < 1, is the FF of normed linear spaces
given by (L;N ).

A fairly wide class of examples of FFs are given by weighted Lp spaces. For 1 � p < 1,
let w be a �xed nonnegative, nonincreasing Lebesgue measurable real-valued function and let
L = L(<;<N ) be the set of N vector-valued functions on < that are p-integrable Lebesgue on
�nite intervals. Then, for f 2 L the seminorms

kfks;t = (
Z t

s
kf(�)kpw(t� �)d�)1=p (2-1)

satisfy Conditions (1),� � � ,(5) of De�nition 1. For p =1, let L be the set of essentially bounded
functions. When � = +1 and K = 1, a uniform time weighting is given and (L;N ) is referred
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to as a standard FF of seminorms. As time weighting was not essential to its purpose, standard
FFs were used in [13].

We de�ne another FF of seminorms. For f 2 L, put kfks;t �= sups<��t kfks;� . With M
indicating this new set of seminorms, (L;M) is indeed a FF of seminorms, [9].

A FF (L;N ) and fAs;tg, �1 < s < t <1, can be augmented to include k�k�1;t by taking
the limit s ! �1, since by (3) of De�nition 1 kfks;t is monotone nondecreasing as s ! �1
with t �xed. Let L0 = ff 2 Lj lims!�1 kfks;t <1; t 2 <g. For f 2 L0, de�ne

kfkt
�
= lim
s!�1

kfks;t = kfk�1;t : (2-2)

With the meaning of (L;N ) thus extended, k�ks;t is de�ned for �1 � s < t < 1. The left-
expanded FF of seminorms is thereby de�ned and is denoted (L0;N ). It still satis�es all the
Conditions (1); � � � ; (5).

To discuss natural state we also need to de�ne k�ks;1 and As;1 in a meaningful way. For
a FF, this is done by taking the supremum. Let L00 = ff 2 L0j supt kfkt < 1g. For f 2 L00
de�ne

kfks;1
�
= sup

t>s
kfks;t ; �1 � s : (2-3)

It may be readily veri�ed that if (L;N ) is a FF for indices satisfying�1 < s < t <1 then, with
de�nitions given by (2-2) and (2-3), (L00;N ) is a FF for indices satisfying �1 � s < t < 1
and satis�es Conditions 1, 2, 3, and 5 of De�nition 1 for indices �1 � s < t � 1. (For
standard FFs Condition 4 holds for both cases.) f(L00;N ); k�ks;t ; �1 � s < t � 1g is called
the expanded family of seminorms determined by (L;N ). Note that (L00;M) similarly de�ned
is a FF for �1 � s < t � 1.

For f 2 L00 we put
kfk �= sup

t2<
kfkt = kfk�1;1 : (2-4)

The normed linear space consisting of equivalence classes of functions in L00 with the norm
(2-4) is called the bounding space A for the family fAs;tg.

The extended space Ae for the family fAs;tg is the set of all equivalence classes of functions f
in L0 (f � g i¤ kf � gk = 0) for which kfks <1 for all s. It does not have a norm and, indeed,
is given no topology. This de�nition agrees with the notion of extended space commonly used
in the control literature.

It is possible that a FF (L;N ) has a vacuous expansion in the sense that L00 is the empty
set. An obvious example of this is given when L is the set of all constant real-valued functions
on < and N is the set of L1-norms on �nite intervals. To prevent this from happening and
further to prevent the bounding space A from being too small (in a sense to be made explicit
below) we can require that a FF be �full,�as in the following de�nition.

De�nition 2 The FF (L;N ) is full if each equivalence class us;t 2 As;t, �1 < s < t < 1,
has a representing function belonging to L00.

When this de�nition is satis�ed, then for all pairs (s; t), �1 < s < t < 1, there is a 1:1
correspondence between the normed linear space As;t determined by (L;N ) and the normed
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linear space A0s;t determined by (L00;N ), which preserves the normed linear space structure.
The correspondence is given by us;t $ u0s;t, us;t 2 As;t, u0s;t 2 A0s;t if and only if us;t and u0s;t
have a common representing function f 2 L00. Thus, if (L;N ) is full, we need not distinguish
between As;t and A0s;t. Henceforth, every FF mentioned is assumed to be full. The FFs formed
with Lp spaces as described above are full. To emphasize the relations among the equivalence
classes, suppose the function f 2 L00 determines the equivalence classes u 2 A, ut 2 At, ut 2 At
and us;t 2 As;t. Since

kf � gks;t � kf � gkt � kf � gk
t � kf � gk

the equivalence class u considered as a set of functions is entirely contained in the equivalence
class ut considered as a set of functions, and similarly ut � ut and ut � us;t; also u � ut;1. Thus,
e.g., given t, u determines ut and ut;1. Therefore, if f determines u and �1 � s < t � 1, it is
meaningful for example to write kfks;t, kuks;t,

ut
s;t
, kus;1ks;t, kutks;t, kus;tks;t, and they are

all equal. Let �1 � r < s < t � 1. Then, since kfks;t � kfkr;t for f 2 L00, the partitioning
of L00 into equivalence classes by k�kr;t results in a �ner partition than that given by k�ks;t.
That is, letting f determine u 2 U , we have u � ur;t � us;t.

In order to de�ne the natural state, it is necessary to consider an arbitrary past input
concatenated with an arbitrary future input; that is, to �splice�two inputs.

De�nition 3 For �1 � r < s < t <1, and h, g 2 L, the splice of h and g over (r; t] at s is
de�ned and equals f if

f(�) =

�
h(�); r < � � s
g(�); s < � � t

belongs to L. It is denoted fr;t = hr;s+! gs;t. For t =1, the splice of h and g equals f if

f(�) =

�
h(�); r < � � s
g(�); s < �

belongs to L. It is denoted fr;1 = hr;s+! gs;1.

If ur;s 2 Ar;s, vs;t 2 As;t are determined by functions h and g respectively, and hr;s+! gs;t
exists, then for a FF, the splice of u and v (or ur;s and vs;t) over (r; t] at s is de�ned to be the
element wr;t 2 Ar;t determined by hr;s+! gs;t; we write wr;t = ur;s+! vs;t. For t =1 we write
wr;1 = ur;s+! vs;1. These are not meaningful until it is proved that the splice is independent
of the particular functions h and g representing the equivalence classes ur;s and vs;t. However,
this proof follows easily from De�nition 1.

Any input space U is herein taken to be either the bounding space A of a FF fAs;tg that
permits splicing or a translation-invariant subset of A. The extended space Ae can appear in
an auxiliary role. Whether the normed linear space A is complete or not is irrelevant for the
purposes of this report. We write Us;t, �1 � s < t � 1, to denote the set (�space�) of
equivalence classes of functions belonging to U as determined by k�ks;t. If U = A, then Us;t is
the normed linear space As;t; if U is a subset of A, Us;t is a space only in the sense that it is a
subset of As;t. We call any Us;t a truncated input space and write Ut for U�1;t.

The requirement that A permits splicing means that, if U = A, future inputs at any t can be
arbitrary, independent of the past. Unfortunately, spaces of functions everywhere continuous
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on < do not qualify, but this appears to be a minor drawback. It is sometimes desired that U
be a translation-invariant bounded (or even totally bounded) subset of A; we always assume U
contains the zero function. If U is a proper subset of A, a splice of two elements in U does not
necessarily belong to U , of course. However, we require that for all u 2 U , both ut+! 0t;1 and
0t+! ut;1 belong to U .

The output space Y is taken to be the bounding space, here denoted B, of a FF of normed
linear spaces fBs;tg, or occasionally the corresponding extended space Be. In general, the
families fBs;tg and fAs;tg need not be the same. The notations for output spaces are analogous
to those for input spaces. The comments about equivalence classes are valid for the ys;t 2 Bs;t.

A mapping F : U ! Y is called a global input-output mapping (or usually just input-output
mapping).

De�nition 4 Let (Y; F; U) be an input-output system. F is a causal mapping and (Y; F; U) is
a causal system if and only if for all t and for all u; v 2 U such that ku� vkt = 0 it follows
that kF (u)� F (v)kt = 0.

If F satis�es this de�nition it determines a mapping from Ut into Bt, denoted eFt, that
satis�es

 eFtut � (Fu)t
t
= 0. We call eFt a truncated input-output mapping and de�ne the

centered truncated input-output mapping Ft : U0 ! Y0 by Ft(u0)
�
= Lt eFtRt(u0), where Rt �= L�t

is the right-shift by t. We assume that all systems in this report are causal. If F satis�es this
de�nition, it is causal in the usual sense. However, memory can a¤ect causality.

De�nition 5 Consider a left-expanded FF fAs;tg;�1 � s < t < 1. The family fAs;tg and
the norms k�kt are said to be �nite memory with memory length M if there exists 0 < M <1
such that kfkt = kfkt�M;t for all f 2 L0, t 2 <.

Is is seen that if w in (2-1) has �nite support, that is w(t) = 0 for t � M , the weighted
Lp normed linear spaces are examples of �nite memory spaces with memory length M . Finite
memory may cause a system that is causal in the usual sense to not be causal according to
De�nition 4.

As in [13], the norms we use here for input-output mappings F , eFt, and Ft and for the
natural states are the N -power norms, denoted [] � [](N). (We omit the subscript (N) when
possible). Let � be a mapping from a normed linear space X into a normed linear space Z.
For any nonnegative integer N , the N -power norm for � is given by

[]�[](N)
�
= sup
x2X

k�(x)k
1 + kxkN

(2-5)

when the right side exists. We say � is bounded (in N -power norm) if []�[](N) < 1. If � is
bounded, it carries bounded sets into bounded sets by the inequality

k�(x)k � []�[](N) � (1 + kxkN ) :

However, boundedness of � does not in general imply continuity nor vice versa. The space of
bounded operators from U to Y is denoted by FN (U; Y ). The space of bounded and contin-
uous operators from U to Y is denoted by CN (U; Y ). We have chosen to use N -power norms
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rather than Lipschitz norms because they are less restrictive and because they are not so much
in�uenced by the �ne structure of a mapping. This last property seems to be important when
one is dealing with an approximate system representation (see Heitman, [3] page 785). Other
properties of these norms are given in the appendix of [13], which also gives comparisons with
the Lipschitz norm. Although [13] uses the standard FFs, its appendix also applies to FFs in
general. The N -power norms are special cases of a more general class of weighted supremum
norms where kxkN in the denominator of the de�ning expression is replaced by an arbitrary,
continuous, positive function of x; X need not be normed (see Appendix A in [14]).

Using (2-5) on the truncated system mapping and the system mapping, we have

[]Ft[](N) = sup
u0

kFt (u0)k0
1 + ku0kN0

= sup
ut

 eFt (ut)
t

1 + kutkNt
= [] eFt[](N) (2-6)

and

[]F [](N) = sup
u

kF (u)k
1 + kukN

: (2-7)

Hence, we have the useful relationship

[]F [](N) � sup
t
[]Ft[](N) = sup

t
[] eFt[](N) : (2-8)

Throughout this report, whenever there is reference to a system (Y; F; U), the following
three hypotheses are in e¤ect unless speci�cally noted otherwise:

(A) The input space U is either the bounding space A of a FF of normed linear spaces that
permits splicing or a shift-invariant subset of such an A. If U is a proper subset of A,
we require that it contain 0, but also that u 2 U implies both ut+! 0t;1 and 0t+! ut;1
belong to U .

(B) The output space Y is the bounding space B of a FF of normed linear spaces.

(C) The global system operator F satis�es De�nition 4 (causality) with respect to the given
A and B.

The noncentered natural states e�ut and the natural states �ut are to be de�ned as operators
with domains eDut and Dut , respectively, where

eDut �
= fvt;1 2 Ut;1jut+! vt;1 2 U; 8ut � utg

and
Dut

�
= fv0;1 2 U0;1jut+! Rtv0;1 2 U; 8ut � utg :

Lemma 6 Under the conditions just speci�ed, given any t 2 < and any u 2 U , there exists a
mapping e�ut : eDut ! Yt;1 such that

e�ut (vt;1)� (F (ut+! vt;1))t;1


t;1

= 0 for all vt;1 2 eDut .
Furthermore, if u and u0 satisfy ku� u0kt = 0 then e�ut = e�u0t . (Note that Dut = Du0t .)
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The proof of Lemma 6 is similar to the proof of Lemma 1 in [13]. Denote the Nerode

equivalence class of de�ning inputs for e�ut by [ut]�; i.e., u0t 2 [ut]� if e�u0t = e�ut . Lemma 6 allows
one to frame the following de�nition.

De�nition 7 ([10], [13], [14]) The natural state for a system (Y; F; U) induced at time t by
input ut is de�ned to be the operator �ut from Dut to Y0;1 given by

�ut (v0;1) = Lte�ut (Rtv0;1) : (2-9)

The set of natural states is denoted �; the set of natural states that can be achieved at time t is
denoted �(t) so that � = [t2<�(t). (� is referred to at times as the natural state space or the
natural state set.)

Obviously, the state set � is minimal since � 2 � is de�ned as a mapping. Natural state
may be de�ned for F not necessarily causal; however, we only consider causal F here.

The next hypothesis will often be needed but will not be in e¤ect unless stated explicitly.

(D) The operators Ft : U0 ! Y0 are uniformly bounded in N -power norm for some �xed
positive integer N by a constant C < 1 for all t 2 <, and are an equicontinuous family
of uniformly continuous mappings.

Hypothesis (D) gives that the global system operator is bounded with bound C and uni-
formly continuous, see Lemmas 4 and 5 of [13].3 Let FN (X;Z) be the normed linear space
of all mappings � : X ! Z with []�[]N < 1, and CN (X;Z) be the normed linear subspace
of FN (X;Z) of all continuous �. With Hypothesis (D) in force, � � CN (U0;1; Y0;1); see Ap-
pendix A. Other properties that result from Hypothesis (D) are given in [13] and [14] and are
mentioned at the time they are invoked. As stated previously, properties of the natural state
and its relationship to F are given in [10], [13], and [14].

3The proofs given in [13] were intended for a standard FF; however, such proofs usually hold for FFs in general
if Condition 5 of De�nition 1 is not used.
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3 SOME STATE SPACE PROPERTIES

There are a few properties of the natural state space that can be related to constraints, or
lack of constraints, on memory and on the class of admissible inputs. We have seen in [13] that
the system determines the natural state space. We will �nd that some common systems, those
represented by linear �nite dimensional time-invariant di¤erential equations, are determined by
natural state space. That is, for these systems, the map from system to natural state space
is one to one. Hence, the property that natural state space determines the system may be
desirable for understanding system models in general. We examine how memory a¤ects this
property. The idea is that, in a sense, natural state de�nes the future part of the system.
This, along with a tapered memory (a form of approximate �nite memory, de�ned below),
may specify the system. We give su¢ cient conditions, including tapered input spaces, by which
systems are determined by natural state space. We also provide su¢ cient conditions for systems
represented by polynomial integral operators to have this same property. We consider the e¤ect
memory has on reachability of states in the natural state space. It is shown that systems with
�nite memory input spaces or tapered input spaces exhibit a degree of reachability. Most of
the results in this chapter are for time-invariant systems. We start with an example, which is
very simple even though it is pathological, that points out certain negative possibilities.

Example 8 Let the basic function space L(<;<) for inputs be the set of real-valued functions
on < that are bounded and piecewise continuous (continuous except possibly at a �nite number
of points on any �nite interval and with �nite left- and right-hand limits at these points). The
family of norms is given by kfks;t = sups<��tjf(�)j, f 2 L(<;<). The input space U is either
the bounding space A for this family or a shift-invariant subset thereof. Let the basic function
space for outputs be the Lebesgue space L1 of real-valued functions. We want to have a �nite
observation interval of length b > 0 for the outputs, so the family of norms is given by

kfks;t = esssup
max(s;t�b)<��t

jf(�)j; f 2 L1 :

The output space Y is the bounding space for this family, and one has Yt = Yt�b;t. Let T ,
T 2 (0;1), be �xed and h be a real-valued integrable function such that h(s) = 0 for s =2 [0; T ],
and

R T
0 jh(�)j d� 6= 0.

Let u �
= limt!�1u(t). De�ne a system mapping F by

[F (u)](s)
�
=

Z s

�1
h(s� �)u(�)d� + u; �1 < s <1 : (3-1)

The output is yt 2 Yt, where yt(s) = [ eFt(ut)](s), t� b < s � t, is given by (3-1) with s restricted
as indicated. The mapping F is linear and time-invariant. Put I =

R T
0 jh(�)jd� . Consider the

continuity of F0 and F :F0(u)� F0(u0)0 = esssup
�b<s�0

����Z s

s�T
h(s� �)(u(�)� u0(�))d� + (u� u0)

����
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� I�(
u� u0

0
) +

��u� u0�� : (3-2)

Since ku� u0k0 < � implies ju� u0j � �, F0 is uniformly continuous and []F0[]N < 1 for any
N � 1. Also, F is uniformly continuous and has �nite N-power norm for any N � 1.

The state �u0 is given by

[�u0(v0;1)](s) =

Z 0

min(s�T;0)
h(s� �)u(�)d� + u+

Z s

max(0;s�T )
h(s� �)v(�)d� ; s � 0 ; (3-3)

where it is to be noted that the �rst integral vanishes if s > T . Thus for s > T , [�u0(v0;1)](s)
depends on u only through u. Note that []�u0 []N <1 for any N � 1 and is a uniformly continuous
operator.

We consider this basic example now from two di¤erent aspects. The concept of reachability
is needed in what follows.

De�nition 9 In a time-invariant system, the natural state �00 is reachable from �0 if there is
an input that will drive the system from the state �0 to �00 in �nite time.

We continue the example.
(a) To start with, it is immaterial whether U = A or whether U is bounded. Denote by

U1 and U2 the sets of inputs u 2 U such that u = 1 and u = 2 respectively, and suppose they
are not empty. Let �1 be the set of states f�u0g, u 2 U1, and �2 be the set of states f�w0 g,
w 2 U2. First, one may observe that �1 and �2 are disjoint sets, and indeed are actually a
positive distance apart. In fact, for any u 2 U1 and w 2 U2,

[]�u0 � �w0 []N = sup
v0;1

k[�u0 � �w0 ](v0;1)k0;1
1 + kvkN0;1

�
k[�u0 � �w0 ](v0;1)kT;1

1 + kvkN0;1
(3-4)

for any particular choice of v0;1. Let v(s) = 0 for all s. Then, by (3-3), for this particular v,

[]�u0 � �w0 []N � k[�u0 � �w0 ](v0;1)kT;1 � 1 :

Furthermore, no state in �2 is reachable from any state in �1 and vice versa. Since the system
is time-invariant, if the state �u0 , u 2 U1, were to be reachable from the state represented by

�w0 , w 2 U2, there would have to be s < 0 and x 2 U such that �(Rsw)
s+!xs;0

0 = �u0 . But this
cannot be, because (Rsw)s+! xs;0 = w, no matter what s and x may be, implies (Rsw)s+! xs;0
generates a state in �2 whereas �u0 2 �1. Since �1 and �2 are a positive distance apart, we
cannot even approximate �u0 starting from �

w
0 . We note that it is admissible to consider a system

as above with input space u 2 U1 [ U2, since this U is translation-invariant.
(b) Consider now two systems. Two systems (Y; F 1; U) and (Y; F 2; U) (having the same

input and output spaces) are identical if for all u 2 U we have y1 = F 1(u) = y2 = F 2(u). Let �
denote the natural state set for (Y; F 1; U), and let H denote the natural state set for (Y; F 2; U).
These two systems have identical natural state sets if, for all � 2 �, there exists � 2H such that
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for all v0;1 2 U0;1 we have y10;1 = �(v0;1) = y20;1 = � (v0;1) and vice versa. We set their
input space to be U = A. We denote the �rst system by F 1 and de�ne it by (3-1). The system
mapping for the second system is given by

[F 2(w)](s) =

Z s

s�T
h(s� �)w(�)d� + 2 � w; (3-5)

�1 < s < 1, w 2 U . These are clearly di¤erent systems. We claim, however, they have the
same set of natural states. Let the state given by u at t = 0 in the �rst system be �u0 and the
state given by w at t = 0 in the second system be �w0 . For arbitrary u, we �nd w such that

[�u0(v0;1)](s) = [�
w
0 (v0;1)](s) (3-6)

for all v and all s � 0. From the formula for [�u0(v0;1)](s), (3-3) and the corresponding formula
for [�w0 (v0;1)](s), we see that any w 2 U , such that (i) w = 0:5 � u and (ii) w(s) = u(s) for
�T < s � 0 will satisfy (3-6). The same sort of argument applies the other way around, so the
two systems have the same set of natural states.

Example 8 indicates some system behavior that can occur if there is �too much memory,�
meaning the present output depends on input from too far back in the past. Presumably one
does not expect this sort of condition should occur, even in the model of a natural system. It
does not happen with systems represented by the following types of linear di¤erential equations.

Example 10 Consider two di¤erent systems
:
x = Ax + Bu and

:
x = Fx + Gu, with output

equation y = x for both, where A 6= F and where x(t) 2 <n, u(t) 2 <m. Let (A;B) and (F;G)
be completely controllable. Then, the state vector x(t) for each system may be any point in <n.
Let the natural state set for

:
x = Ax + Bu be � and for

:
x = Fx + Gu be H. From Example 2

of [13], a vector x(t) 2 <n corresponds to a natural state �t 2 � and a natural state �t 2 H.
However, �t 6= �t; e.g., consider the state transition property for �t and �t. It may also be seen
that �\H=;. If � =H however, then A = F and B = G. This also points out the di¤erence
between the state vector and the natural state.

Using systems with tapered input spaces is a technical device which has been mentioned that,
in some measure, at least prevents there being too much memory. It is used as a hypothesis
in what follows. Part (a) of Example 8 illustrates how reachability and even approximate
reachability can be prevented in a system with too much memory. We have no strong results
on reachability, but there are some facts that can be deduced immediately and are summarized
in the following remark and in Proposition 15. We will need the following de�nition.

De�nition 11 ([14]) Let L(<; E) be a translation-invariant space of time functions from <
into E with the property that, for each f 2 L, there is a real number T = T (f) such that
f(t) = 0 for all t < T . Then L is called a shifted-zero space.

Shifted-zero input spaces may be convenient when considering unstable systems that do not
�blow up� in a �nite time or man-made systems that are activated at some �nite time. For
time-invariant systems, shifted-zero input spaces are equivalent to the system being de�ned
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over the half line. The following lemma gives su¢ cient conditions for the natural state space
� to be connected. Connectedness is a weaker property than reachability for a natural state
space because reachability implies connectedness.

Lemma 12 (Serakos, [14], Proposition 4.2.1.) Consider a (possibly time-varying) input-output
system (Y,F,U). Assume that the state trajectories are continuous (e.g., use Proposition 4 of
[13] or Proposition 4.1.2 of [14]) and that U is a shifted-zero space. Then � is arcwise connected.

Proof: In fact, given �0 and �00, suppose �0 = �ut and �
00 = �vs . Since U is a shifted-zero

space, there is some r < s; t such that ku � vkr = 0: The state trajectory starting with �ur
generated by ur+! vr;s connects �ur and �

00. It then follows there is an arc running from �0 to
�ur and thence to �

00. The states are arbitrary, so it follows that � is arcwise connected. (Note
we are not saying that �00 is reachable from �0.) �

Remark 13 In a time-invariant system with a �nite memory input space, it is obvious that
any state is reachable from any other state, and the time required to reach a speci�ed state is
no more than the duration of the memory.

From Remark 13, one would expect that a system that has an approximately �nite memory
input space � e.g., a system with a tapered input space � would exhibit approximate reacha-
bility, at least in the time-invariant case. But �rst, we present the de�nition of a tapered input
space.

De�nition 14 ([10]) Consider a left-expanded FF fAs;tg;�1 � s < t < 1. For any c > 0

and t, let G(c; t) �
= ff 2 L0; kfk� � c for all � � tg. Then fAs;tg and the norms k�kt are

said to be tapered if, for any � > 0, c > 0 and t 2 <, there is � = �(�; c; t) > 0 such that
kfkt � kfkt��;t + � for all f 2 G(c; t).

Note that � does not in fact depend on t and also that kfks � kfks��;s + � for any s � t.
When w in (2-1) is integrable, the weighted Lp normed linear spaces are examples of tapered
FF of normed linear spaces. A speci�c class of tapered spaces are �nite memory spaces. For
the next proposition, we use the fact that Hypothesis D implies that the natural state is a
uniformly continuous function of prior input (see Proposition 3 of [13]).

Proposition 15 (Professor Root provided this proposition.) Let Hypothesis D hold. Let U be
the bounding space and the associated norms be tapered. Then, given � > 0 and any two natural
states �0 and �00, the natural state may be driven from �0 to approximate �00 as closely as desired.
In fact, if �0 = �x0 and �

00 = �u0 , there is t < 0 such that

[]�
(Rtx)t+!ut;0
0 � �00[]N � � :

Proof: Since �0 = �x0 = �
(Rtx)
t for any t, the result follows immediately from the de�nition

of a tapered family, the fact U is the bounding space, and since (see [13] and [14]) the natural
state is a uniformly continuous function of prior input. �

A standard feature of the natural state space is that it is determined by the system. It is of
mathematical interest to see when the map from system to natural state space is one to one.
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Example 8 shows that natural state space is insu¢ cient to determine the system. Example 10
gives a common example when it does. Hence, it may also be of practical interest (for instance
in modeling man-made or natural systems) to resolve this same issue. Situations where natural
state space determines the system are given by the following propositions and corollaries.

Proposition 16 ([14], Proposition 4.2.3.) Consider two causal systems (Y; F 1; U) and
(Y; F 2; U). Let these systems be time-invariant, continuous, and have the same state set �.
Then, if U is bounded and tapered, they are identical systems.

Proof: To show that F 1 and F 2 are identical, it is necessary to prove that F 1(u) = F 2(u)
for all u 2 U . Denote a state for F 1 by � and a state for F 2 by �. Given an input u 2 U to F 2,
consider the state trajectory t! �ut . For T �xed, there exists v 2 U , such that �vT = �uT (for a
time-invariant system, a natural state may be achieved at any time). Then,

k�vT (x0;1)� �uT (x0;1)k0;1 = 0

for all x0;1 2 Domain(�vT ) = Domain(�uT ), in particular,

k�vT (LT (uT;1))� �uT (LT (uT;1))k0;1

=
F 1(vT+! uT;1)� F 2(uT+! uT;1)


T;1 = 0 :

For t = T � 1, there exists w 2 U such that �wT�1 = �
u
T�1. AgainF 1(wT�1+! uT�1;1)� F 2(uT�1+! uT�1;1)


T�1;1 = 0 :

Therefore, it may be assumed that v = wT�1+! uT�1;1. It now may be seen that a sequence
of inputs vi 2 U , i = 1; 2; � � � may be constructed such that

vi � u
T+1�i;1 = 0 withF 1(vi) � F 2(u)

T+1�i;1 = 0. Here, v1 = vT+! uT;1 and v2 = wT�1+! uT�1;1.
Since U is bounded and tapered, given � > 0, there exists � = �(�; T ) such thatvi � u

T
�
vi � u

T��;T + �

for all i = 1; 2; � � � (De�nition 14). Take i > � + 1, thenvi � u
T
� 0 + �

since for such i, vi � u
T��;T �

vi � u
T+1�i;T = 0 :

Thus limi!1
vi � u

T
� �. But � is arbitrary, so limi!1

vi � u
T
= 0, i.e., viT ! uT . Then,F 1(u)� F 2(u)

T
= lim
j!1

F 1(u)� F 2(u)
T�j;T

= lim
j!1

F 1( limi!1 vi)� F 2(u)

T�j;T

= lim
j!1

lim
i!1

F 1(vi)� F 2(u)
T�j;T :
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But for �xed j, for all i � j + 1 F 1(vi)� F 2(u)
T�j;T = 0 :

Hence, for all j,
lim
i!1

F 1(vi)� F 2(u)
T�j;T = 0

and thus,
lim
j!1

lim
i!1

F 1(�i)� F 2(u)
T�j;T = 0 : �

In the following two corollaries, additional conditions are used to apply Proposition 16 to
systems with unbounded input spaces and time-varying systems.

Corollary 17 For an input-output system (Y; F; U) with state space � and unbounded input
space U , let

�C = f�ut 2 �j kuk � Cg :

Let (Y; F 1; U) have state space � and (Y; F 2; U) have state space H, and as in Proposition 16,
be time-invariant continuous systems with U tapered but unbounded. Then the two systems are
identical if �C =HC for all C <1.

Proof: Apply Proposition 16 to all designated u 2 U with C = kuk. �
A statement may be made concerning Proposition 16 and time-varying systems if one degree

of freedom is removed in a manner similar to the previous corollary.

Corollary 18 For an input-output system (Y; F; U) with state space �, let

�(t) = f�ut 2 �g :

Let (Y; F 1; U) having state space � and (Y; F 2; U) having state space H be continuous but time-
varying systems. Let the input space U be bounded and tapered. Then the two systems are
identical if �(t) = H(t) for all t 2 <.

Proof: Trace through the proof of Proposition 16 applying the new hypothesis where
appropriate. �

Next, we look at the question, does state determine system for systems represented by
polynomial integral operators? These are an important class of systems because they may be
used to approximate classes of systems; see [8]. A scalar version of the following proposition is
in [16]. We provide a de�nition of a polynomial integral operator.

De�nition 19 ([14]) By a time-invariant N th degree causal, polynomial integral operator with
M -dimensional input space u = [u1; � � � ; uM ] 2 U with norm kuks;t = maxi kuiks;t and kuiks;t =
sups<��t jui(�)j and P -dimensional output space with norm kyks;t = maxi kyiks;t and kyiks;t =
supmax(s;t�b)<��t jyi(�)j, b � 0, we mean a mapping of the form:

[Fp(u)](t) =
NX
n=1

[Fnp (u)](t); p 2 [1; 2; � � � ; P ] (3-7)
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where

[Fnp (u)](t) =

Z 1

0
� � �
Z 1

0

MX
i1;��� ;in=1

f i1;��� ;inp (�1; � � � ; �n)ui1(t� �1) � � �uin(t� �n)d�1; � � � ; d�n :

The above sum is taken over all combinations without repeating; hence, there are Mn terms.
Such an operator is unchanged if the kernels f i1;��� ;inp , all p and n are symmetrized. The sym-
metrized kernel of f i1;��� ;inp , denoted by ef i1;��� ;inp , is de�ned by

ef i1;��� ;inp (�1; � � � ; �n)
�
=
1

n!

X
�

f
i�(1);��� ;i�(n)
p (��(1); � � � ; ��(n)) :

(The sum is taken over all permutations �; total n! terms).

Advantages and disadvantages of polynomial integral operators are discussed in Section 3
of Root, [8]. It turns out that their generality is cited for both of these considerations. Their
generality makes them useful while, at the same time, can make them unwieldy for some
applications.

Proposition 20 Consider an input-output system represented by a polynomial integral opera-
tor. The following conditions are imposed on the kernels f i1;��� ;inp :

(a) f i1;��� ;inp (�1; � � � ; �n) is continuous on <n.
(b) f i1;��� ;inp (�1; � � � ; �n) is absolutely integrable on <n.
(c) The symmetrized kernel ef satis�es

sup
�1;��� ;� i

ef i1;��� ;inp (�1; � � � ; � i; � i+1; � � � ; �n)

is absolutely integrable as a function of � i+1; � � � ; �n for all 1 � i < n, for all 1 � n � N and
all p 2 P .

Denote the class of operators given by (3-7) with kernels f i1;��� ;inp satisfying (a), (b), and
(c) by V (N) and denote the subclass of V (N) with symmetric kernels by Vs(N). Under these
conditions,

(i) In the class of systems (Y; F; U) with U and Y as given immediately above and with
F 2 Vs(N), the natural state set � determines the kernels ef1; � � � ; efN .

(ii) In the class of systems (Y; F; U) with U and Y as in (i) and F 2 V (N), the natural
state set � determines the system, i.e., determines F .

Proof: Given in Appendix B.
Consider systems (Y; F; U) with F 2 V (N). Since each u 2 U is bounded, F (u) 2 Y by

condition (b); hence, these systems are well-de�ned. The assertion (ii) follows directly from (i).
In fact, if two systems of the speci�ed class have the same state set �, they are represented
by the same set of symmetrized kernels; hence, the (perhaps unsymmetrized) kernels used in
their description produce the same mapping. Our proof of assertion (i) goes by �rst taking
an interval around a point where the two kernels are assumed to be di¤erent. By looking at
the form of the natural state, an input is selected to show that in fact the two kernels have
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to agree at that point. Initially, scalar N -degree kernels are considered. Then N -order scalar
polynomial kernels are considered. Finally, vector polynomial kernels are considered.

We note that we need only conditions (a) and (b) if the systems are homogeneous integral
operators, but we need (a), (b), and (c) for the general polynomial case. Incidentally, (i) implies
that under the stated conditions for any F 2 V (N), the symmetrized kernels are determined
uniquely � a fact we presume known.

The justi�cation for this proposition is that the restriction of a bounded input space used
in Proposition 16 or the restrictions on the state spaces used in Corollaries 17 or 18 are not
required for Proposition 20. However, the conclusion here is weaker in that the uniqueness
of the system mapping is shown to hold only within the special class of systems de�ned by
polynomial integral operators.
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4 STATE DIFFERENTIABILITY PROPERTIES
IN INPUT-OUTPUT SYSTEMS

In this chapter, di¤erentiability properties of various maps involving the natural state of an
input-output system are analyzed. The analysis is patterned after the continuity analysis in
Section 3 of [13] with the objective of obtaining di¤erentiability analogs to some of the continuity
results. In this regard, these results may be viewed as upgrades of results presented in [13].
These results are inherited from appropriate di¤erentiability assumptions on the input-output
system. Gateaux, as well as Frechet, di¤erentials and derivatives are used in these results as
they appear in [14]. Here we present the Frechet case only. Time-varying systems are considered
in this chapter.

We present three results. All require the di¤erentiability of the input-output system. The
�rst gives the di¤erentiability of the natural state. The second gives the di¤erentiability of the
map from past input to natural state. This result requires the Frechet derivative remainder
converges uniformly to zero. The last result implies the di¤erentiability of the natural state
trajectories. This result requires that U be shift di¤erentiable and that t ! Ft be a shift
di¤erentiable system trajectory.

This chapter may be contrasted with the work of Jakubczyk [4], [5], and also with Sussmann,
[17]. In comparing [4], [5], and [17] with this report, we must note the distinction between state
vectors and natural states. Example 2 of [13] and Example 10 (this report) aid in noting the
distinction. In [4], [5], and [17] state vectors are considered, while in this report natural states
are considered. In [4] and [5], a �nite dimensional state space di¤erential equation realization of
an input-output system is developed. This is in contrast to the di¤erentiability results for the
natural states developed here, which includes di¤erentiability of the natural state trajectories.
The assumptions used in [4] and [5] are necessary and su¢ cient for providing a �nite dimensional
state variable realization of an input-output system. A fundamental feature of these papers is
that the state vectors are points in an n-dimensional di¤erentiable manifold. The di¤erential
equation representation derived in these papers is of minimum dimension for a given input-
output system. That is, the state vectors are of minimum dimension (or n is minimized). In
[17] a di¤erential equation representation of minimal dimension is determined for a system that
is already in state variable or di¤erential form but not necessarily minimal. The natural state
space in this report is a subset of an in�nite dimensional Banach space (e.g., it is not necessarily
linear, locally Euclidean, or a manifold.) As mentioned in the introduction, the natural state
space has the essential state properties. The natural state space is minimal as set. This is
di¤erent than minimizing the dimension of the state vector. Also, a state vector in [4] and [5] is
contained in an open set; however, a natural state may not be contained in an open set (although
Remark 13 gives conditions when the natural state space is connected). No coordinate chart
can be de�ned on the natural state space since its dimension is not speci�ed. Dimensionality
(�nite or not) is not relevant in this report. Di¤erentiability of individual natural state space
trajectories is considered. Because of these reasons, [4], [5], and [17] are not comparable with
this report.

In this chapter we will assume that the domains of the states are large enough for the stated
operations to be de�ned (e.g., U = A, see Hypothesis A).
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De�nition 21 The input-output system (Y; F; U) has a Frechet derivative if for u; v 2 U , with
u contained in an open subset of U ,

F (u+ v) = F (u) + L(u; v) +W (u; v) (4-1)

where L(u; �) : U ! Y is linear and bounded and W (u; �) : U ! Y has the property that

lim
kvk!0

kW (u; v)k
kvk = 0 :

L(u; v) is called the Frechet di¤erential of (Y; F; U) at u in the direction v, and W (u; v) is called
the remainder. The operator L(u; �) : U ! Y is called the Frechet derivative of F at u and is
denoted F 0(u); [2].

We make a special note that Frechet di¤erentiability implies continuity, see Cheney, [2].
The following proposition is a di¤erentiability upgrade to Proposition 1 in [13].

Proposition 22 If the Frechet derivative of (Y; F; U) at u exists, then the Frechet derivative
of the natural state map �ut : U0;1 ! Y0;1 at Ltut;1 exists.

Proof: Let v0;1 = Ltut;1, w0;1 2 U0;1. We have

�ut (v0;1 + w0;1)� �ut (v0;1)

= [LtF (u
t+! Rt(v0;1 + w0;1))]0;1 � [LtF (ut+! Rtv0;1)]0;1

= [LtF (u
t+! Rtv0;1 + 0

t+! Rtw0;1)� LtF (ut+! Rtv0;1)]0;1

= [LtL(u
t+! Rtv0;1; 0

t+! Rtw0;1) + LtW (u
t+! Rtv0;1; 0

t+! Rtw0;1)]0;1

= [LtL(u
t+! Rtv0;1; 0

t+! Rtw0;1)]0;1 + [LtW (u
t+! Rtv0;1; 0

t+! Rtw0;1)]0;1 : (4-2)

Obviously, L1(v0;1; �)
�
= [LtL(u

t+! Rtv0;1; 0t+! Rt�)]0;1 : U0;1 ! Y0;1 inherits linearity from
L (u; �). Also,

[]L1[] = sup
w0;1

L1(v0;1; w0;1)0;1
kw0;1k0;1

= sup
w0;1

LtL(ut+! Rtv0;1; 0t+! Rtw0;1)

0;1

kw0;1k0;1

= sup
w0;1

LtL(ut+! Rtv0;1; 0t+! Rtw0;1)

0;1

k0t+! Rtw0;1)k
�
0t+! Rtw0;1)


kw0;1k0;1

� sup
w0;1

LtL(ut+! Rtv0;1; 0t+! Rtw0;1)


k0t+! Rtw0;1)k
� []L[] ;

hence, L1 is bounded. De�ning W 1(v0;1; w0;1)
�
= [LtW (u

t+! Rtv0;1; 0t+! Rtw0;1)]0;1, we
have

lim
kw0;1k0;1!0

W 1(v0;1; w0;1)

0;1

kw0;1k0;1
= lim
kw0;1k0;1!0

LtW (ut+! Rtv0;1; 0t+! Rtw0;1)

0;1

kw0;1k0;1
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� lim
k0t+!Rtw0;1k!0

W (ut+! Rtv0;1; 0t+! Rtw0;1)


k0t+! Rtw0;1k
= 0 :

This last inequality comes from the change in the time interval of the norm in the numerator.
Hence, the Frechet derivative of �ut at Ltut;1 exists with Frechet derivative L1 and remainder
W 1. As a �nal point, it appears that L1 as it is de�ned above depends on ut. We shall show
that any element in the Nerode equivalence class of �ut , i.e., any ut 2 [ut]� may be used. Let
ut; u

0
t 2 [ut]�. Then

[]L1((v0;1; �)� L01(v0;1; �)[] = sup
w0;1

L1(v0;1; w0;1)� L01(v0;1; w0;1)0;1
kw0;1k0;1

= sup
w0;1

[LtL(ut+! Rtv0;1; 0t+! Rtw0;1)]0;1 � [LtL(u0t+! Rtv0;1; 0t+! Rtw0;1)]0;1

0;1

kw0;1k0;1

= sup
w0;1

lim
c!0

 [LtL(u
t+! Rtv0;1; 0t+! c � Rtw0;1)]0;1

�[LtL(u0t+! Rtv0;1; 0t+! c � Rtw0;1)]0;1


0;1

c � kw0;1k0;1

= sup
w0;1

lim
c!0

 [LtW (u
0t+! Rtv0;1; 0t+! c � Rtw0;1)

�LtW (ut+! Rtv0;1; 0t+! c � Rtw0;1)]0;1


0;1

c � kw0;1k0;1
= 0 : �

The following proposition is a di¤erentiability analog to Proposition 3 in [13].

Proposition 23 Let all the natural states have the same domain. If the Frechet derivative of
a bounded map F at u exists, if �U = +1 and if (kW (u; v)k = kvk)! 0 as kvk ! 0 uniformly
in u, then the Frechet derivative of the map S : Ut ! � de�ned by S(�t) = ��t at ut exists.

Proof: Calculate
�u+vt (w0;1)� �ut (w0;1)

= [LtF ((u+ v)
t+! Rtw0;1)� LtF (ut+! Rtw0;1)]0;1

= [LtF (u
t+! Rtw0;1 + v

t+! 0t;1)� LtF (ut+! Rtw0;1)]0;1

= [LtL(u
t+! Rtw0;1; v

t+! 0t;1) + LtW (u
t+! Rtw0;1; v

t+! 0t;1)]0;1 :

First, consider the map ut ! �ut (w0;1) for w0;1 �xed. Clearly, [LtL(ut+! Rtw0;1;
�+! 0t;1)]0;1 : U0 ! Y0;1 is linear, and

lim
kvtkt!0

LtW (ut+! Rtw0;1; vt+! 0t;1)

0;1

kvtkt

� lim
kvt+!0t;1kt!0

W (ut+! Rtw0;1; vt+! 0t;1)


K�1
U � kvt+! 0t;1k

= 0

by increasing the time interval of the norm in the numerator and by the assumption on U .
(Note that since �U = +1; kvtkt ! 0 i¤

vt+! 0t;1
 ! 0.) Now, consider S. De�ne an
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operator �(ut; �) : Ut ! CN (U0;1; Y0;1) for some positive integer N by

[�(ut; vt)](w0;1)
�
= [LtL(u

t+! Rtw0;1; v
t+! 0t;1)]0;1 :

Note that � is linear in vt. Also, de�ne an operator 
(ut; vt) : Ut � Ut ! C1N (U0;1; Y0;1) by

[
(ut; vt)](w0;1)
�
= [LtW (u

t+! Rtw0;1; v
t+! 0t;1)]0;1 :

It follows from the uniformity hypothesis on W that

lim
kvtkt!0

[]
(ut; vt)[]

kvtkt
= lim
kvtkt!0

sup
w0;1

LtW (ut+! Rtw0;1; vt+! 0t;1)

0;1

1 + kw0;1kN0;1
kvtkt

� sup
w0;1

lim
kvt+!0t;1k!0

W (ut+! Rtw0;1; vt+! 0t;1)

t;1

K�1
U � kvt+! 0t;1k

= 0 :

If S is bounded, then � is bounded, (see Theorem 2, Chapter 3 of [2]).

[]S[] = sup
ut

[]�ut []

1 + kutkNt
= sup

ut

sup
v

k�ut (v0;1)k0;1
1 + kv0;1kN0;1
1 + kutkNt

� sup
u;v

F (ut+! Rtv0;1)
�

1 + kutkNt
��
1 + kv0;1kN0;1

� = sup
u;v

F (ut+! Rtv0;1)


1 + kutkNt + kv0;1k
N
0;1 + kutk

N
t kv0;1k

N
0;1

� (2N + 1) � sup
u;v

F �ut+! Rtv0;1
�

1 +
�
kutkt + kv0;1k0;1

�N � (2N + 1) � sup
u;v

F �ut+! Rtv0;1
�

1 + kut+! Rtv0;1kN

= (2N + 1) � sup
u

kF (u)k
1 + kukN

= (2N + 1) � []F [] :

Hence, S has Frechet derivative �(ut; �) at ut with remainder 
(ut; �). �
We will need the following two de�nitions in the next proposition, which is a di¤erentiability

upgrade (analog) to Proposition 4 in [13].

De�nition 24 The input space U is shift-di¤erentiable if, for all u 2 U ,

Lhu = u+ h � d+ e(h) (4-3)

where d; e(h) 2 U and limh!0 ke(h)kt =h = 0 for all t 2 <. d is the shift derivative of u.

A shift-di¤erentiable input space U is also shift-continuous, as mentioned in Appendix C. A
shift-di¤erentiable input u does not necessarily have a derivative with respect to time (at least
not everywhere; see Appendix C.)
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De�nition 25 A system trajectory is a shift-di¤erentiable system trajectory t! Ft if

LhFRh = F + h �G+H(h) (4-4)

where G 2 C1N (U; Y ) and H(h) 2 C1N (U; Y ) and such that

lim
h!0

[]H(h)t[]

h
= 0 for all t 2 <� (4-5)

Conditions that include a semigroup generator for the system trajectory for a shift-di¤erenti-
able system trajectory are given in Appendix D. Appendix D also gives conditions so that (4-5)
is uniform in t.

Proposition 26 Let all the natural states have the same domain. Let Hypothesis D from
Page 2-6 hold. Assume that the input space U and the system trajectory t ! Ft are shift-
di¤erentiable and that the Frechet derivative L(u; �) of F exists for all u 2 U . In addition, with
regard to the shift di¤erentiability of U , assume that limh!0 ke(h)ks =h! 0 uniformly for s � T
for all T 2 < for each u 2 U . Also, assume that (4-5) is uniform in t. Then for all u 2 U , the
state trajectory t! �ut is di¤erentiable.

Proof: First calculate:

�ut+h(v0;1)� �ut (v0;1) = [Lt+hF (ut+h+! Rt+hv0;1)� LtF (ut+! Rtv0;1)]0;1

= [Lt+hF (u
t+h+! Rt+hv0;1)� LtF ((Lhu)t+! Rtv0;1)]0;1

+[LtF (u
t+! Rtv0;1 + (hd+ e(h))

t+! 0t;1)� LtF (ut+! Rtv0;1)]0;1 : (4-6)

So then,

lim
h!0

�ut+h(v0;1)� �ut (v0;1)
h

= lim
h!0

[Lt+hF (u
t+h+! Rt+hv0;1)� LtF ((Lhu)t+! Rtv0;1)]0;1

h

+ lim
h!0

[Lt(L(u
t+! Rtv0;1; (hd+ e(h))t+! 0t;1)

+W (ut+! Rtv0;1; (hd+ e(h))t+! 0t;1))]0;1
h

: (4-7)

Consider part of the second term on the right-hand side of (4-7): limh!0 [Lt(W (ut+! Rtv0;1; (hd+ e(h))t+! 0t;1))]0;1
h


0;1

� lim
h!0

W (ut+! Rtv0;1; (hd+ e(h))t+! 0t;1)


k(hd+ e(h))t+! 0t;1k
�
(hd+ e(h))t+! 0t;1


h

= I : (4-8)

Now,

lim
h!0

(hd+ e(h))t+! 0t;1


h
= lim
h!0

sup
s

(hd+ e(h))t+! 0t;1

s

h
= II :
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To compute this limit, there are two cases to consider:
(i) s > t:

II � kdk+ lim
h!0

ke(h)kt
h

= kdk :

(ii) s � t:

II � lim
h!0

sup
s<t

�
khdks + ke(h)ks

h

�
� kdk+ lim

h!0
sup
s<t

ke(h)ks
h

= kdk :

Therefore, I is zero.
Consider the �rst term on the right-hand side of (4-7):

lim
h!0

[Lt+hF (u
t+h+! Rt+hv0;1)� LtF ((Lhu)t+! Rtv0;1)]0;1

h

= lim
h!0

[Lt(LhF (Rh((Lhu)
t+! Rtv0;1))� F ((Lhu)t+! Rtv0;1))]0;1

h

= lim
h!0

[Lt(LhF (Rh((u+ hd+ e(h))
t+! Rtv0;1))� F ((u+ hd+ e(h))t+! Rtv0;1))]0;1

h

= lim
h!0

[Lt(h �G((u+ hd+ e(h))t+! Rtv0;1) +H(h)((u+ hd+ e(h))t+! Rtv0;1))]0;1
h

:

where G and H are from De�nition 25. Now,

lim
h!0

[Lt(h �G((u+ hd+ e(h))t+! Rtv0;1))]0;1
h

= [LtG(u
t+! Rtv0;1)]0;1 : (4-9)

And

lim
h!0

[Lt(H(h)((u+ hd+ e(h))t+! Rtv0;1))]0;1

0;1

h

� lim
h!0

sup
�

H(h)((u+ hd+ e(h))t+! Rtv0;1)

�

h

� lim
h!0

sup
�

[]H(h)� []

h
� (1 +

(u+ hd+ e(h))t+! Rtv0;1
N ) = 0 :

Hence, from (4-7), (4-8), and (4-9), the derivative of the state trajectory t! �ut is

lim
h!0

�ut+h(�)� �ut (�)
h

= [LtG(u
t+! Rt�)]0;1 + [Lt(L(ut+! Rt�; dt+! 0t;1))]0;1 :� (4-10)

Thus, for time-invariant systems, di¤erentiability of the natural state trajectory follows from
the general conditions and the shift di¤erentiability of the input FF. Note that ut appears in
(4-10). However, similar to Proposition 22, any element in the Nerode equivalence class of ut

may be used. Indeed, consider a time T and natural state �uT and suppose there is u
0 2 U such
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that �u
0
T = �

u
T . Then for all t� T; v 2 U by the state transition property,

�
uT+!vT;1
t = �

u0T+!vT;1
t :

If the natural state trajectories are di¤erentiable, then the derivatives of the natural state
trajectories are identical for all t � T . Hence,

d(�
uT+!vT;1
t )

dt
=
d(�

u0T+!vT;1
t )

dt
;

for all t �T , where for t = T , the derivative is taken from the right. Assume that these two
inputs are shift di¤erentiable, then for all t� T

[LtG(u
0T+! vT;t+! Rt�)]0;1 + [Lt(L(u0T+! vT;t+! Rt�; d0t+! 0t;1)]0;1

= [LtG(u
T+! vT;t+! Rt�)]0;1 + [Lt(L(uT+! vT;t+! Rt�; dt+! 0t;1)]0;1 :

For t = T , limits are taken from the right in computing these terms. Hence, it does not matter
if u0; d0 or u; d are used in (4-10).

From Proposition 26 we get a di¤erential equation representation for the natural state
trajectory:

d�ut
dt

= [LtG(u
t+! Rt�)]0;1 + [Lt(L(ut+! Rt�; dt+! 0t;1))]0;1 : (4-11)

Note that the domains and ranges of the two terms on the right in (4-11) have the same form
as the domain and range of a natural state.

Example 27 Consider4 the causal input-output system described by a second degree polynomial
integral operator of the form

y(r) = [F (u)](r) =

Z 1

0

Z 1

0
f(r; �1; �2)u(r � �1)u(r � �2)d�1d�2; �1 < r <1 (4-12)

where, purely for simplicity, the input time functions, the kernel f , and hence the output time
functions are scalar valued (otherwise the product forming the integrand must be de�ned as a
tensor product). Obviously such a system is time-varying unless the kernel f is not actually
a function of its �rst argument. It will be assumed that f (r; �2; �2) is symmetric in �1 and
�2. This entails no loss of generality since symmetrizing f does not change the value of the
integral.5 We choose ordinary L2 norms for the FF of the input space and the L1 norms for

4This example is a continuation of Example 1, [13].
5From the de�nition of a symmetrized kernal, fsym (r; �1; �2)) = 1

2
(f(r; �1; �2) + f(r; �2; �1)). Hence,

the symmetry property, fsym (r; �1; �2) = fsym (r; �2; �1). To show that using the regular (unsymmetrized)
or symmetrized kernal within the integral (4-12) is the same, we have

R1
�1

R1
�1 fsym(r; �1; �2)d�1d�2 =R1

�1
R1
�1

1
2
(f(r; �1; �2) + f(r; �2; �1)) d�1d�2 =

1
2

R1
�1

R1
�1 f(r; �1; �2)d�1d�2 +

1
2

R1
�1

R1
�1 f(r; �2; �1)d�2d�1 =R1

�1
R1
�1 f(r; �1; �2)d�1d�2 .
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the FF of the output space. Thus, e.g.,

kuk0 =
�Z 0

�1
ju(t)j2 dt

�1=2
(4-13)

and
kyk0 = ess sup

�1<t�0
jy(t)j : (4-14)

Finally, assume that for all s there is M <1 such thatZ 1

0

Z 1

0
jf(s; �1; �2)j2d�1d�2 �M : (4-15)

We now determine the form of the operators Ft and �ut . First, [ eFt(ut)](r) = [F (u)](r) for
r � t, so eFt is given by Equation (4-12) with �1 < r � t. Then,

[Ft(u0)](p) = [Lt eFt(Rtu0)](p) = [F (Rtu)](t+ p)
=

Z 1

0

Z 1

0
f((t+ p); �1; �2)u(p� �1)u(p� �2)d�1d�2; �1 < p � 0 : (4-16)

The natural state �ut is given by

[�ut (v0;1)](�) = [Lte�ut (Rtv0;1)](�)
= [F (ut+! Rtv0;1)](t+ �); � � 0 : (4-17)

Evaluation of the right side of (4-17) yields

[�ut (v0;1)](�) =

Z 1

0

Z 1

0
f(t+ �; � + �1; � + �2)u(t� �1)u(t� �2)d�1d�2

+2

Z �

0

Z 1

0
f(t+ �; � + �1; �2)u(t� �1)v(� � �2)d�1d�2

+

Z �

0

Z �

0
f(t+ �; �1; �2)v(� � �1)v(� � �2)d�1d�2; � � 0 : (4-18)

We need to consider the boundedness and continuity of the system operator. Looking at the
issue of boundedness: From (4-12), (4-13), and (4-15) it follows for all t and all p � 0 that

j[Ft(u0)](p)j =
����Z 1

0

Z 1

0
f((t+ p); �1; �2)u(p� �1)u(p� �2)d�1d�2

����
�
Z 1

0

Z 1

0
jf((t+ p); �1; �2)u(p� �1)u(p� �2)j d�1d�2 ;
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using the Schwarz inequality,

�
�Z 1

0

Z 1

0
jf((t+ p); �1; �2)j2 d�1d�2

�1=2�Z 1

0

Z 1

0
ju(p� �1)u(p� �2)j2 d�1d�2

�1=2

�M �
�Z 1

0

Z 1

0
ju(p� �1)j2 d�1

�1=2�Z 1

0

Z 1

0
ju(p� �2)j2 d�2

�1=2
�M � kuk20 (4-19)

From (4-19),

[]Ft[]N = sup
u2U0

kFt(u0)k0
1 + kukN0

�M sup
u2U0

kuk20
1 + kukN0

;

so that if N � 2, the Ft are all bounded by M . Then by (2-8), []F [] � M . By Appendix A,
or Proposition 2 of [13], for each u 2 U , []�ut [] is bounded in t. U0 may be any subset of A0,
including A0 itself. Turning to the issue of continuity,��[Ft(u0)� Ft(u00)](p)��

=

����Z 1

0

Z 1

0
f((t+ p); �1; �2)

�
u(p� �1)u(p� �2)� u0(p� �1)u0(p� �2)

�
d�1d�2

����
�
Z 1

0

Z 1

0

��f((t+ p); �1; �2)�u(p� �1) �u(p� �2)� u0(p� �2)�
+
�
u(p� �1)� u0(p� �1)

�
u0(p� �2)

	�� d�1d�2 ;
using the Schwarz inequality,

�
�Z 1

0

Z 1

0
jf((t+ p); �1; �2)j2 d�1d�2

�1=2

�
�Z 1

0

Z 1

0

��u(p� �1) �u(p� �2)� u0(p� �2)�+ �u(p� �1)� u0(p� �1)�u0(p� �2)��2 d�1d�2�1=2
using the Minkowski inequality,

�
�Z 1

0

Z 1

0
jf((t+ p); �1; �2)j2 d�1d�2

�1=2

�
 �Z 1

0

Z 1

0

��u(p� �1) �u(p� �2)� u0(p� �2)���2 d�1d�2�1=2

+

�Z 1

0

Z 1

0

���u(p� �1)� u0(p� �1)�u0(p� �2)��2 d�1d�2�1=2!

�
�Z 1

0

Z 1

0
jf((t+ p); �1; �2)j2 d�1d�2

�1=2
4-9
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�
 �Z 1

0
ju(p� �1)j2 d�1

�1=2�Z 1

0

��u(p� �2)� u0(p� �2)��2 d�2�1=2

+

�Z 1

0

��u(p� �1)� u0(p� �1)�� d�1�1=2�Z 1

0

��u0(p� �2)��2 d�2�1=2!
�M �

u0 � u000 � (ku0k0 + u000) ; (4-20)

therefore, Ft is continuous. However, if U0 is unbounded we cannot guarantee that Ft is uni-
formly continuous. So now suppose that U0 is bounded, ku0k0 �M 0, u0 2 U0. Then by (4-20)Ft(u0)� Ft(u00)0 = sup

p�0

��[Ft(u0)� Ft(u00)](p)�� �M � 2M 0 u0 � u000
so that fFtg is an equicontinuous family of uniformly continuous operators. This gives that F is
uniformly continuous (shown in Lemma 4 of [13]). Then from Appendix A, the natural states �ut
are uniformly continuous. Furthermore, it follows that the conclusions of Proposition 3 of [13]
(the mapping input to natural state is uniformly continuous) and Proposition 5 of [13] (future
natural state depends continuously on past natural state) hold. From Proposition 4 of [13] the
natural state trajectory is continuous if the system trajectory t ! Ft is continuous (e.g., the
system is time invariant).

We next consider the di¤erentiability properties presented in this chapter. To start with, we
consider whether the system (4-12) has a Frechet derivative. We have

F (u+ v) =

Z 1

0

Z 1

0
f(r; �1; �2) ((u+ v) (r � �1)) ((u+ v) (r � �2)) d�1d�2

=

Z 1

0

Z 1

0
f(r; �1; �2)u(r � �1)u(r � �2)d�1d�2

+2 �
Z 1

0

Z 1

0
f(r; �1; �2)u(r � �1)v(r � �2)d�1d�2

+

Z 1

0

Z 1

0
f(r; �1; �2)v(r � �1)v(r � �2)d�1d�2 : (4-21)

We compare the terms of (4-21) with those in De�nition 21. Looking at (4-12),

F (u) =

Z 1

0

Z 1

0
f(r; �1; �2)u(r � �1)u(r � �2)d�1d�2 :

De�ne

L (u; v)
�
= 2 �

Z 1

0

Z 1

0
f(r; �1; �2)u(r � �1)v(r � �2)d�1d�2 (4-22)

and we see L (u; �) is linear. L is bounded as is seen from

[]L (u; �) [] = sup
v

kL (u; v)k
kvk

4-10
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= sup
v

supr
��2 � R10 R1

0 f(r; �1; �2)u(r � �1)v(r � �2)d�1d�2
��

kvk

� sup
v

2 � supr
qR1

0

R1
0 kf(r; �1; �2)k2 d�1d�2

qR1
0

R1
0 ku(�1)v(�2)k2 d�1d�2

kvk

= sup
v

2 � supr
qR1

0

R1
0 kf(r; �1; �2)k2 d�1d�2

qR1
0 ku(�1)k2 d�1

qR1
0 kv(�2)k2 d�2

kvk

� 2M � kuk kvk
kvk � 2M � kuk :

De�ne

W (u; v)
�
=

Z 1

0

Z 1

0
f(r; �1; �2)v(r � �1)v(r � �2)d�1d�2 : (4-23)

Then

lim
kvk!0

kW (u; v)k
kvk = lim

kvk!0

supr
��R1
0

R1
0 jf(r; �1; �2)v(r � �1)v(r � �2)j d�1d�2

��
kvk

� lim
kvk!0

M � kvk2

kvk = 0 :

Hence the input-output system has a Frechet derivative and this decides the applicability of
Proposition 22. We see that (4-23) is uniform in u, and therefore, Proposition 23 is applicable.
Looking at Proposition 26, a number of conditions need to be satis�ed for this proposition to give
di¤erentiable state trajectories. The shift di¤erentiability of L2 is considered in Appendix C.
The su¢ cient conditions of Proposition C-5 provide that u 2 L2 is shift di¤erentiable if it has
a time derivative and has a bounded remainder, as in (C-6). Our system trajectory is shift
di¤erentiable if it is time invariant (this is a su¢ cient condition, other speci�c cases may be
considered.) These conditions are su¢ cient for Proposition 26 to apply to this input-output
system. Checking into the form of (4-11), if the system is time-invariant, G is zero. Then

d�ut
dt

= [Lt(L(u
t+! Rt�; dt+! 0t;1))]0;1 ;

where d is the shift derivative of u. Substituting (4-22),

d�ut
dt
(v0;1) (r)

= 2 �
Z 1

0

Z 1

0
f(t+ r; �1; �2)

�
ut+! Rtv0;1

�
(t+ r � �1)

�
dt+! 0t;1

�
(t+ r � �2)d�1d�2 ;

where 0 � r <1.
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5 SUMMARY AND CONCLUSIONS

It is pointed out that the natural state set is unique to an input-output system if a tapered
input space is used (Proposition 16) or if the system has a polynomial integral operator rep-
resentation (Proposition 20). (A form of this result may also hold for the di¤erential equation
representation in Chapter 4.) The uniqueness of the natural state space to an input-output
system may be applicable to the modeling of physical systems and may be of mathematical in-
terest. That is, if uniqueness of the natural state space to a system is evident, then steps should
be taken to incorporate this feature in a mathematical model. This is a property of common
system representations and hence may already be tacitly assumed. For instance, linear �nite
dimensional time-invariant di¤erential systems are uniquely determined by their natural state
space (Example 10). Example 8 shows that systems modeled with excessive memory may not
uniquely de�ne a natural state space. This same example along with Proposition 15 showed
that reachability is a¤ected by memory length. Su¢ cient conditions for a connected natural
state space are given in Lemma 12. Connectedness and reachability of the natural state space
may also be properties of interest in modeling. We gave conditions in [13] for the map from
system to natural state space to be well-de�ned.

It is also pointed out that various di¤erentiability properties of the natural state and natural
state trajectory are inherited from the input-output system. These results are di¤erentiability
upgrades to the continuity results presented in [13]. Proposition 22 gives that if the Frechet
derivative of the input-output system at u exists, then the Frechet derivative of the natural state
at Ltut;1 exists. Proposition 23 gives conditions for the Frechet derivative of the map from
input up to time t to natural state at time t to exist. Proposition 26 gives conditions such that
the Frechet derivative exists along a natural state trajectory. This proposition has the result of
a di¤erential equation representation for the natural state trajectory (Equation (4-11)). These
results, as well as their Gateaux derivative versions, mostly appear in [14]. The di¤erentiability
results presented in this report also may be considered as aids in modeling of physical systems.
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APPENDIX A

BOUNDEDNESS AND CONTINUITY OF
THE NATURAL STATE
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In this appendix, we demonstrate that the natural state inherits boundedness and continuity
from the input-output system. NSWCDD�s publications format guide requires that appendices
be self-contained, so we repeat here the de�nitions of �tted families (FFs) of time functions and
other relevant de�nitions from the main text of this report.

De�nition A-1 ([A-1]) Let L = L(<; E) be a linear space of time functions from < into
a Banach space E such that any translate of a function in L is also a function in L. Let
N = fk�ks;t ;�1 < s < t < 1g be a family of seminorms on L satisfying the following
conditions:

(1) For f1; f2 2 L, if f1(�) = f2(�) for s < � � t then kf1 � f2ks;t = 0.
(2) Let L� denote shift to the left by � . For all f 2 L, kL�fks��;t�� = kfks;t.
(3) Let r < s < t. Then for all f 2 L, kfks;t � kfkr;t.
(4) Let r < s < t. Then for all f 2 L, kfkr;t � kfkr;s + kfks;t.
(5) There exists 0 < � � 1 and K � 1 such that if 0 < t� r � � and r < s < t, then for

all f 2 L, kfkr;s � K kfkr;t.
The pair (L;N ) is called a FF of seminorms on L. The normed linear space formed from
equivalence classes of functions in L with norm k�ks;t is denoted As;t. The elements of As;t are
the equivalence classes determined by: f � g, f; g 2 L if and only if kf � gks;t = 0. They are
denoted us;t, ys;t, etc. The set fAs;tg, �1 < s < t < 1, is the FF of normed linear spaces
given by (L;N ).

For f 2 L, put kfks;t �= sups<��t kfks;� . A FF (L;N ) and fAs;tg, �1 < s < t <1, can be
augmented to include k�k�1;t by taking the limit s! �1, since by (3) of De�nition A-1 kfks;t
is monotone nondecreasing as s ! �1 with t �xed. Let L0 = ff 2 Lj lims!�1 kfks;t < 1;
t 2 <g. For f 2 L0, de�ne

kfkt
�
= lim
s!�1

kfks;t = kfk�1;t : (A-1)

With the meaning of (L;N ) thus extended, k�ks;t is de�ned for �1 � s < t < 1. The left-
expanded FF of seminorms is thereby de�ned and is denoted (L0;N ). It still satis�es all the
Conditions (1); � � � ; (5).

We next de�ne k�ks;1 and As;1. For a FF, this is done by taking the supremum. Let
L00 = ff 2 L0j supt kfkt <1g. For f 2 L00 de�ne

kfks;1
�
= sup

t>s
kfks;t ; �1 � s : (A-2)

It may be readily veri�ed that if (L;N ) is a FF for indices satisfying �1 < s < t < 1 then,
with de�nitions given by (A-1) and (A-2), (L00;N ) is a FF for indices satisfying �1 � s <
t < 1 and satis�es Conditions 1, 2, 3, and 5 of De�nition A-1 for indices �1 � s < t � 1.
f(L00;N ); k�ks;t ; �1 � s < t � 1g is called the expanded family of seminorms determined
by (L;N ).

For f 2 L00, we put
kfk �= sup

t2<
kfkt = kfk�1;1 : (A-3)

The normed linear space consisting of equivalence classes of functions in L00 with the norm
(A-3) is called the bounding space A for the family fAs;tg. For �1 � r < s < t < 1, and h,
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g 2 L, the splice of h and g over (r; t] at s is de�ned and equals f if

f(�) =

�
h(�); r < � � s
g(�); s < � � t

belongs to L. It is denoted fr;t = hr;s+! gs;t. For t =1, the splice of h and g equals f if

f(�) =

�
h(�); r < � � s
g(�); s < �

belongs to L. It is denoted fr;1 = hr;s+! gs;1. Let � be a mapping from a normed linear
space X into a normed linear space Z. As shown in Appendix A of [A-2], for any nonnegative
integer N , the N -power norm for � is given by

[]�[](N)
�
= sup
x2X

k�(x)k
1 + kxkN

(A-4)

when the right side exists.
Boundedness and continuity transfer from the input-output system to the natural state.

Consider the boundedness of the natural state.

[]�ut [] = sup
v0;1

k�ut (v0;1)k0;1
1 + kv0;1kN0;1

= sup
vt;1

e�ut (vt;1)
t;1

1 + kvt;1kNt;1

= sup
vt;1

F �ut+! vt;1
�
t;1

1 + kut+! vt;1kN
�
1 +

ut+! vt;1
N

1 + kvt;1kNt;1

� sup
vt;1

F �ut+! vt;1
�

1 + kut+! vt;1kN
� sup
vt;1

1 +
ut+! vt;1

N
1 + kvt;1kNt;1

� []F [] � sup
vt;1

1 + sups
ut+! vt;1

N
s

1 + kvt;1kNt;1
= I :

There are two cases of values for the variable �s�in I to consider.
(i) Suppose s � t:

I � []F [] �
�
1 + kukN

�
(ii) Suppose s > t:

I � []F [] � sup
vt;1

1 + sups>t
ut+! vt;1

N
s

1 + kvt;1kNt;1
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� []F [] �

0B@1 + sup
vt;1

�
kutkt + kvt;1kt;1

�N
1 + kvt;1kNt;1

1CA
= []F [] �

 
1 + sup

vt;1

kukN + aN�1 kukN�1 kvt;1kt;1 + � � �+ a0 kvt;1k
N
t;1

1 + kvt;1kNt;1

!
where a0; � � � ; aN�1 are constants obtained from expanding the numerator of the previous equa-
tion. This last expression is less than or equal to

� []F [] �
�
1 + kukN + aN�1 kukN�1 + � � �+ a0

�
:

Consider the continuity of the natural state.

k�ut (v0;1)� �ut (w0;1)k0;1 =
e�ut (R�v0;1)� e�ut (R�w0;1)

t;1

=
F �ut+! R�v0;1

�
� F

�
ut+! R�w0;1

�
t;1

�
F �ut+! R�v0;1

�
� F

�
ut+! R�w0;1

� < " ;
provided ut+! R�v0;1 � ut+! R�w0;1

 � kv0;1 � w0;1kt;1 < �

for � = � (") su¢ ciently small. Uniform continuity is also inherited by the natural state from
the input-output system.
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APPENDIX B

PROOF OF PROPOSITION 20
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SCALAR CASE

In this appendix, when two systems are considered, one will be denoted by �ut (v0;1) and
the other will be denoted by �wt (v0;1). Di¤erences between u and w will be represented by z.
At times, u and w will have subscripts. Even when this is the case, subscripts will usually be
omitted from di¤erences represented by z.

Integral Operator Case
We propose to consider the N�degree scalar polynomial case of our problem. First, we

consider a single N�degree term. The system is of the form: (symmetric kernel is assumed)

[F (u)](s) =

Z 1

0
� � �
Z 1

0
f(�1; � � � ; �N )u(s� �1) � � �u(s� �N )d�1 � � � d�N :

The state is of the form:

[�u0(v0;1)](�) = [F (u0+! v0;1)](�)

=

Z 1

0
� � �
Z 1

0
f(�1; � � � ; �N )(u0+! v0;1)(� � �1)

� � � (u0+! v0;1)(� � �N )d�1; � � � ; d�N

=

�
N

0

�Z 1

�
� � �
Z 1

�
f(�1; � � � ; �N )u(� � �1) � � �u(� � �N )d�1 � � � d�N

+

�
N

1

�Z �

0

Z 1

�
� � �
Z 1

�
f(�1; � � � ; �N )v(� � �1)u(� � �2) � � �u(� � �N )d�1 � � � d�N

+

�
N

2

�Z �

0

Z �

0

Z 1

�
� � �
Z 1

�
f(�1; � � � ; �N )v(� � �1)v(� � �2)u(� � �3) � � �u(� � �N )d�1 � � � d�N

+ � � �

+

�
N

N

�Z �

0
� � �
Z �

0
f(�1; � � � ; �N )v(� � �1) � � � v(� � �N )d�1 � � � d�N

where the integral signs and the d� 0si match left to right. Now, replace v by xv, where x 2 <,

=

�
N

0

�z}|{
0F x0 +

�
N

1

�z}|{
1F x1 +

�
N

2

�z}|{
2F x2 + � � �+

�
N

N

�z}|{
NF xN

where z}|{
nF =

Z �

0
� � �
Z �

0| {z }
n

Z 1

�
� � �
Z 1

�| {z }
N�n

f(�1; � � � ; �N )v(� � �n+1) � � � v(� � �N )| {z }
n
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u(� � �1) � � �u(� � �n)| {z }
N�n

d�1 � � � d�N :

Two systems are being dealt with as before, and as before, put h = f � g; also, since the
polynomial is zero, each of the coe¢ cients is zero. Hence,Z �

0
� � �
Z �

0
h(�1; � � � ; �N )v(� � �1) � � � v(� � �N )d�1 � � � d�N = 0

for all v, for all � > 0. Suppose h(a1; a2; � � � aN ) > 0 and the a0si are all di¤erent. Set Ai =
[ai� �=2; ai+ �=2] where � > 0 is small enough such that Ai \Aj = ; for i 6= j. Also, � is small
enough such that h(�1; � � � ; �N ) > 0 for all � i 2 Ai. Hence, with v(s) = 1 on Ai ; = 0 else,Z

Ai

� � �
Z
Ai

h(�1; � � � ; �N )d�1 � � � d�N = 0 (B-1)

for all i. Next, let

v(s) =

�
1; s 2 Ai [Aj
0; elseZ

Ai[Aj

� � �
Z

Ai[Aj

h(�1; � � � ; �N )d�1 � � � d�N

=

�
N

0

�Z
Ai

� � �
Z
Ai

h(�1; � � � ; �N )d�1 � � � d�N

+

�
N

1

�Z
Ai

� � �
Z
Ai

Z
Aj

h(�1; � � � ; �N )d�1 � � � d�N

+ � � �+
�
N

N

�Z
Aj

� � �
Z
Aj

h(�1; � � � ; �N )d�1 � � � d�N = 0 :

This with the above gives �
N

1

�Z
Ai

� � �
Z
Ai

Z
Aj

h(�1; � � � ; �N )d�1 � � � d�N

+ � � �+
�

N

N � 1

�Z
Ai

Z
Aj

� � �
Z
Aj

h(�1; � � � ; �N )d�1 � � � d�N = 0 :

Next,

v(s) =

�
1; s 2 Ai [Aj [Ak
0; else

B-4



NSWCDD/TR-08/3

Z
Ai[Aj[Ak

� � �
Z

Ai[Aj[Ak

h(�1; � � � ; �N )d�1 � � � d�N

=

Z
Ai

+

Z
Aj

+

Z
Ak

+

8><>:
Z

Ai[Aj

�
Z
Ai

�
Z
Aj

9>=>;+
8><>:

Z
Ai[Ak

�
Z
Ai

�
Z
Ak

9>=>;+
8><>:

Z
Aj[Ak

�
Z
Aj

�
Z
Ak

9>=>;+ III :
This has three types of integrals: Type 1 is where only a single integral interval appears, i.e.,
only �Ai�, �Aj�or �Ak.�These are referred to as integrals with A0s taken one at a time. By the
above, these integrals are zero. Type 2 is where all possible integrals with exactly two intervals
appear, as Ai and Aj or Ai and Ak. These appear in the parentheses above. By the above,
these are also zero. The type 3 integrals are represented by the �III� in the above equation.
This type consists of all integrals where Ai, Aj , and Ak all appear. Since the whole thing is
zero and the �rst two types were zero, we conclude that the type three case of integrals is zero.

We proceed to consider Z
� � �
Z

A1[A2[���[AN

h(�1; � � � ; �N )d�1 � � � d�N :

This integral is split up into the sum of N di¤erent classes or types of integrals. The �rst type
is Z

A1

� � �
Z
A1

h(�1; � � � ; �N )d�1 � � � d�N + � � �+
Z
AN

� � �
Z
AN

h(�1; � � � ; �N )d�1 � � � d�N :

It has been found that these are zero. The last type isZ
A1

Z
A2

� � �
Z
AN

h(�1; � � � ; �N )d�1 � � � d�N : (B-2)

The types 1 through N are integrals with the appropriate number of A0si appearing. As we have
seen, each of the lower integral types is zero; hence, the last integral type is zero. Since the
kernels f and g are continuous, h = 0, so we have f(�1; � � � ; �N ) = g(�1; � � � ; �N ) 8�1; � � � ; �N .

Nth Order Scalar Polynomial Case
Following, we consider the Nth order nonhomogeneous case. The state is de�ned by

[�u0(v0;1)](�) = f0 +

Z 1

0
f1(�)[u0+! v0;1](� � �)d�

+

Z 1

0

Z 1

0
f2(�1; �2)[u0+! v0;1](� � �1)[u0+! v0;1](� � �2)d�1d�2

+ � � �+
Z 1

0
� � �
Z 1

0
fN (�1; � � � ; �N )[u0+! v0;1](� � �1) � � � [u0+! v0;1](� � �N )d�1 � � � d�N

=

�
0

0

�
f0 +

�
1

0

�Z 1

�
f1(�)u(� � �)d� +

�
1

1

�Z �

0
f1(�)v(� � �)d�

B-5



NSWCDD/TR-08/3

+

�
2

0

�Z 1

�

Z 1

�
f2(�1; �2)u(� � �1)u(� � �2)d�1d�2

+

�
2

1

�Z �

0

Z 1

�
f2(�1; �2)v(� � �1)u(� � �2)d�1d�2

+

�
2

2

�Z �

0

Z �

0
f2(�1; �2)v(� � �1)v(� � �2)d�1d�2

+ � � �+
�
N

0

�Z 1

�
� � �
Z 1

�
fN (�1; � � � ; �N )u(� � �1) � � �u(� � �N )d�1 � � � d�N

+

�
N

1

�Z �

0

Z 1

�
� � �
Z 1

�
fN (�1; � � � ; �N )v(� � �1)u(� � �2) � � �u(� � �N )d�1 � � � d�N

+ � � �+
�
N

N

�Z �

0
� � �
Z �

0
fN (�1; � � � ; �N )v(� � �1) � � � v(� � �N )d�1 � � � d�N :

Now collecting the terms by degree in v:

=

�
0

0

�
f0 +

�
1

0

�Z 1

�
f1(�)u(� � �)d� +

�
2

0

�Z 1

�

Z 1

�
f2(�1; �2)u(� � �1)u(� � �2)d�1d�2

+ � � �+
�
N

0

�Z 1

�
� � �
Z 1

�
fN (�1; � � � ; �N )u(� � �1) � � �u(� � �N )d�1 � � � d�N

+

�
1

1

�Z �

0
f1(�)v(� � �)d� +

�
2

1

�Z �

0

Z 1

�
f2(�1; �2)v(� � �1)u(� � �2)d�1d�2

+ � � �+
�
N

1

�Z �

0

Z 1

�
� � �
Z 1

�
fN (�1; � � � ; �N )v(� � �1)u(� � �2) � � �u(� � �N )d�1 � � � d�N

+ � � �+
�
N � 1
N � 1

�Z �

0
� � �
Z �

0
fN�1(�1; � � � ; �N�1)v(� � �1) � � � v(� � �N�1)d�1 � � � d�N�1

+

�
N

N � 1

�Z �

0
� � �
Z �

0

Z 1

�
fN (�1; � � � ; �N )v(� � �1) � � � v(� � �N�1)u(� � �N )d�1 � � � d�N

+

�
N

N

�Z �

0
� � �
Z �

0
fN (�1; � � � ; �N )v(� � �1) � � � v(� � �N )d�1 � � � d�N :

Considering two systems with kernels f and g, and with the di¤erence of these having kernel
h, and using the polynomial argument again, each of the terms by degree in v are individually
zero. By what has previously been established, for the N�degree (in v) term we getZ �

0
� � �
Z �

0
hN (�1; � � � ; �N )v(� � �1) � � � v(� � �N )d�1 � � � d�N = 0
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and so hN (�1; � � � ; �N ) = 0 for all �1; � � � �N . Consider the (N � 1)�degree (in v) terms:Z �

0
� � �
Z �

0

�
hN�1(�1; � � � ; �N�1) +

�
N

N � 1

�Z 1

�
fN (�1; � � � ; �N )u(� � �N )d�N

�
�

N

N � 1

�Z 1

�
gN (�1; � � � �N )w (� � �N ) d�N

�
v(� � �1) � � � v(� � �N�1)d�1 � � � d�N�1 = 0 :

If the terms inside the parentheses are continuous, and since fN = gN , setting z = w � u

hN�1(�1; � � � ; �N�1) = �
�

N

N � 1

�Z 1

�
fN (�1; � � � ; �N )z(� � �N )d�N :

Continuing,

jhN�1(�1; � � � ; �N�1)j � C
Z 1

�
jfN (�1; � � � ; �N )j d�N ;

where C is some positive constant (z is assumed bounded). Taking the limit as � !1 yields
hN�1(�1; � � � ; �N�1) = 0 for all �1; � � � ; �N�1, since we assume that fN is absolutely integrable:
Now going back through the terms in decreasing order,Z �

0

�
h1(�1) +

��
2

1

�Z 1

�
f2(�1; �2)z2(� � �2)d�2 + � � �

+

�
N

1

�Z 1

�
� � �
Z 1

�
fN (�1; � � � ; �N )zN (� � �2; � � � ; � � �N )d�2 � � � d�N

��
v(� � �1)d�1 = 0:

If the terms inside the parentheses are continuous, and u, w are bounded, then

jh1(�1)j � C2
Z 1

�
jf2(�1; �2)j d�2 + � � �+ CN

Z 1

�
� � �
Z 1

�
jfN (�1; � � � ; �N )j d�2 � � � d�N ;

where the C 0si are positive constants. Taking the limit as � ! 1 gives h1(�) = 0 for all � .
Looking at the zeroth degree term,

jh0j � C1
Z 1

�
jf1(�)j d� + � � �+ CN

Z 1

�
� � �
Z 1

�
jfN (�1; � � � ; �N )j d�1 � � � d�N ;

where the C 0si are positive constants. (The C
0s
i in separate equations are not the same.) Taking

the limit � !1 gives h0 = 0.
We summarize the necessary conditions. All the kernels f1; � � � fN are absolutely integrable

and continuous. These terms also need be continuous:Z 1

�
fN (�1; � � � ; �N )z(� � �N )d�N ;

Z 1

�

Z 1

�
fN (�1; � � � �N )z(� � �N�1; � � �N )d�N�1d�N ;

B-7



NSWCDD/TR-08/3

...Z 1

�
� � �
Z 1

�
fN (�1; � � � �N )z(� � �2; � � � ; � � �N )d�2 � � � d�N ;Z 1

�
fN�1(�1; � � � �N�1)z(� � �N�1)d�N�1 ;

...Z 1

�
� � �
Z 1

�
fN�1(�1; � � � �N�1)z(� � �2; � � � ; � � �N�1)d�2 � � � d�N�1 ;

...

Z 1

�
f2(�1; �2)z(� � �2)d�2 :

We consider su¢ cient conditions for the continuity of these terms.

lim
� 01;���� 0i

!�1;��� ;� i

Z 1

�
� � �
Z 1

�

��fN (� 01; � � � ; � 0i; � i+1; � � � ; �N )z(� � � i+1; � � � ; � � �N )
�fN (�1; � � � ; � i; � i+1; � � � ; �N )z(� � � i+1; � � � ; � � �N )j d� i+1 � � � d�N

� Const: lim
� 01;��� ;� 0i
!�1;��� ;� i

Z 1

�
� � �
Z 1

�

��fN (� 01; � � � ; � 0i; � i+1; � � � ; �N )
�fN (�1; � � � ; � i; � i+1; � � � ; �N )j d� i+1 � � � d�N :

Assume
sup

�1;��� ;� i
fN (�1; � � � ; � i; � i+1; � � � ; �N )

�
= g(� i+1; � � � ; �N )

is absolutely integrable (as a function of � i+1; � � � ; �N ). Hence, from the Lebesgue Dominated
Convergence Theorem:

lim
� 01;��� ;� 0i
!�1;��� ;� i

Z 1

�
� � �
Z 1

�

��fN (� 01; � � � ; � 0i; � i+1; � � � ; �N )� fN (�1; � � � ; � i; � i+1; � � � ; �N )�� d� i+1 � � � d�N
=

Z 1

�
� � �
Z 1

�
lim

� 01;��� ;� 0i
!�1;��� ;� i

��fN (� 01; � � � ; � 0i; � i+1; � � � ; �N )
�fN (�1; � � � ; � i; � i+1; � � � ; �N )j d� i+1 � � � d�N = 0 :
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VECTOR CASE

De�nition of Operator and Permutation
The system at hand is an N�degree homogeneous integral operator with M -dimensional

input space. An input u is of the form [u1; � � � ; uM ] with norm kuk s;t = max
i
kuiks;t and

kuiks;t = sup
s<��t

jui(�)j. Without loss of generality, the output space has dimension one. The

system mapping is represented by

[F (u)](t) =

Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN=1

f i1;��� ;iNN (�1; � � � ; �N )ui1(t� �1) � � �uiN (t� �N )d�1 � � � d�N ;

where i1; � � � ; iN 2 f1; 2; � � � ;Mg, not necessarily distinct. Note that M may be greater than,
less than, or equal to N . For example, if N = 2 and M = 3, [i1; i2] = (1; 1); (2; 2); (3; 3); (1; 2);
(1; 3); (2; 1); (2; 3); (3; 1); (3; 2). That is, these are the values [i1; i2] take on in the above sum.
If N = 3 and M = 2, [i1; i2; i3] = (1; 1; 1); (2; 2; 2); (1; 1; 2); (1; 2; 1); (2; 1; 1); (1; 2; 2); (2; 1; 2);
(2; 2; 1). There are MN terms in this sum.

A proposed symmetrization for each kernel f is

ef i1;��� ;iNN (t1; � � � ; tN ) =
1

N !

X
�

f
�(i1);��� ;�(iN )
N (t�(1); � � � ; t�(N))

where � is the permutation of N ordered symbols; if �(a1; � � � ; aN ) = (b1; � � � ; bN ) we write
�(ai) = bi. For example, in the above sum, if N = 3 and [i1; i2; i3] = (1; 2; 3), the terms
appearing would have (1; 2; 3); (1; 3; 2); (2; 1; 3); (2; 3; 1); (3; 1; 2); (3; 2; 1) for the superscripts
on fN . If N = 3 and [i1; i2; i3] = (1; 3; 3), the terms appearing would be (1; 3; 3); (1; 3; 3);
(3; 1; 3); (3; 1; 3); (3; 3; 1); (3; 3; 1). There are N ! terms in this sum. Note that we also have that

ef i1;��� ;iNN (t1; � � � ; tN ) =
1

N !

X
�

f
i�(1);��� ;i�(N)
N (t�(1); � � � ; t�(N))

and we will use this form. This symmetrization has the following two properties:
(i) - For the �rst property consider,Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN=1

ef i1;��� ;iNN (�1; � � � ; �N )ui1(t� �1) � � �uiN (t� �N )d�1 � � � d�N

=

Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN=1

(
1

N !

X
�

f
i�(1);��� ;i�(N)
N (��(1); � � � ; ��(N))

)
ui1(t� �1) � � �uiN (t� �N )d�1 � � � d�N : (B-3)

Now, consider a speci�c set of indices i1; � � � ; iN . Suppose that there are I distinct indices and
a particular index ij is repeated rj times. Then r1 + r2 + � � � + rI = N . We will say that
the outside sum cares about repeats (takes repeats into account), but the inside sum does not
take repeats into account. Between the two sums, a total of N ! �

�
N
r1

��
N�r1
r2

�
� � �
�
N�(r1+���+rI�1)

rI

�
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number of terms are generated for the speci�c set under consideration. But, there are only�
N
r1

��
N�r1
r2

�
� � �
�
N�(r1+���+rI�1)

rI

�
di¤erent ways to permute this speci�c set. In each term, there

are four sets of indices:
1. The �superscript�indices on �f�
2. The indices associated with the �0s on the argument of f
3. The indices on the u0s

4. The indices on the arguments of the u0s

First, assume no repeats in the outer sum, i.e., all ri = 1. Note that
�
N
1

��
N�1
1

�
� � �

�
2
1

��
1
1

�
=

N !. With the inner sum, in this case, there are N ! � N ! terms. Each of the N ! outside sum
�base�terms (a term on the left-hand side of (B-3)), is permuted N ! times by the inner sum.
Take a speci�c outside �base� term with the indices in a speci�c order. Of the N ! terms it
gives, only the identity permutation term has its indices in the speci�ed order:

f1;��� ;N (�1; � � � ; �N )u1(t� �1) � � �uN (t� �N ) : (B-4)

However, each of the other outside �base�terms, of the form

~
f
�(1);��� ;�(N)

(�1; � � � ; �N )u�(1)(t� �1) � � �u�(N)(t� �N ) ;

has a single term with the permutation ��1, which has indices in the speci�ed order

f1;��� ;N (���1(1); � � � ; ���1(N))u�(1)(t� �1) � � �u�(N)(t� �N )

= f1;��� ;N (���1(1); � � � ; ���1(N))u1(t� ���1(1)) � � �uN (t� ���1(N)) : (B-5)

However, (B-4) and (B-5) are identical, since there are N ! such terms and since the inside part
of (B-3) is divided by N !, we see that under the condition of all ri = 1 the symmetrization does
not alter the operator.

Next, suppose r1 6= 1 and all other ri = 1. With the indices in their speci�c order, the
outside term is

~
f
1;���1;2;��� ;P

(�1; �2; � � � ; �N )u1(t� �1) � � �u1(t� �r1)u2(t� �r1+1) � � �uP (t� �N ) :

This term gives r1! inner terms with indices in this order, and they are all identical. Now, there
are

�
N
r1

�
� (N � r1)! �outside�terms with these indices in any order; so far we have considered

one, the one with the indices in the speci�ed order. Each of these other �outside�terms gives
r1! inner terms with these indices in the speci�ed order. Total number of terms in the speci�ed
order are

�
N
r1

�
� (N � r1)! � r1! = N !. However, dividing by N ! gives the symmetrization and once

again does not alter the operator.
Now for a couple of examples: First, consider three distinct indices

~
f
123

(�1; �2; �3) =
1

3!
[f123(�1; �2; �3) + f

213(�2; �1; �3) + f
312(�3; �1; �2)

+f132(�1; �3; �2) + f
231(�2; �3; �1) + f

321(�3; �2; �1)
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~
f
213

(�1; �2; �3) =
1

3!
[f123(�2; �1; �3) + f

213(�1; �2; �3) + f
312(�3; �2; �1)

+f132(�2; �3; �1) + f
231(�1; �3; �2) + f

321(�3; �1; �2)

~
f
312

(�1; �2; �3) =
1

3!
[f123(�2; �3; �1) + f

213(�3; �2; �1) + f
312(�1; �2; �3)

+f132(�2; �1; �3) + f
231(�3; �1; �2) + f

321(�1; �3; �2)

~
f
132

(�1; �2; �3) =
1

3!
[f123(�1; �3; �2) + f

213(�3; �1; �2) + f
312(�2; �1; �3)

+f132(�1; �2; �3) + f
231(�3; �2; �1) + f

321(�2; �3; �1)

~
f
231

(�1; �2; �3) =
1

3!
[f123(�3; �1; �2) + f

213(�1; �3; �2) + f
312(�2; �3; �1)

+f132(�3; �2; �1) + f
231(�1; �2; �3) + f

321(�2; �1; �3)

~
f
321

(�1; �2; �3) =
1

3!
[f123(�3; �2; �1) + f

213(�2; �3; �1) + f
312(�1; �3; �2)

+f132(�3; �1; �2) + f
231(�2; �1; �3) + f

321(�1; �2; �3) :

Sum and integrate the f231 terms. For example:Z
f231(�2; �3; �1)u1(t� �1)u2(t� �2)u3(t� �3)

+

Z
f231(�1; �3; �2)u2(t� �1)u1(t� �2)u3(t� �3)

+

Z
f231(�3; �1; �2)u3(t� �1)u1(t� �2)u2(t� �3)

+

Z
f231(�3; �2; �1)u1(t� �1)u3(t� �2)u2(t� �3)

+

Z
f231(�1; �2; �3)u2(t� �1)u3(t� �2)u1(t� �3)

+

Z
f231(�2; �1; �3)u3(t� �1)u2(t� �2)u1(t� �3) :

These terms are identical. For the second example, consider the N = 3, M = 2 case given
above. In this example, the left-hand side of (B-3) isZ

~
f
111

(�1; �2; �3)u1(t� �1)u1(t� �2)u1(t� �3)

+

Z
~
f
112

(�1; �2; �3)u1(t� �1)u1(t� �2)u2(t� �3)
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+

Z
~
f
121

(�1; �2; �3)u1(t� �1)u2(t� �2)u1(t� �3)

+

Z
~
f
122

(�1; �2; �3)u1(t� �1)u2(t� �2)u2(t� �3)

+

Z
~
f
211

(�1; �2; �3)u2(t� �1)u1(t� �2)u1(t� �3)

+

Z
~
f
212

(�1; �2; �3)u2(t� �1)u1(t� �2)u2(t� �3)

+

Z
~
f
221

(�1; �2; �3)u2(t� �1)u2(t� �2)u1(t� �3)

+

Z
~
f
222

(�1; �2; �3)u2(t� �1)u2(t� �2)u2(t� �3) :

Take all terms with r1 = 2 and r2 = 1. Expand these using the inner sum,

~
f
112

(�1; �2; �3) =
1

3!
ff112(�1; �2; �3) + f112(�2; �1; �3) + f121(�1; �3; �2)

f121(�2; �3; �1) + f
211(�3; �1; �2) + f

211(�3; �2; �1)g
~
f
121

(�1; �2; �3) =
1

3!
ff121(�1; �2; �3) + f121(�3; �2; �1) + f112(�1; �3; �2)

f112(�3; �1; �2) + f
211(�2; �1; �3) + f

211(�2; �3; �1)g
~
f
211

(�1; �2; �3) =
1

3!
ff211(�1; �2; �3) + f211(�1; �3; �2) + f121(�2; �1; �3)

f121(�3; �1; �2) + f
112(�2; �3; �1) + f

112(�3; �2; �1)g :

Pull out and put into integrals the terms with indices in the order �1; 1; 2,�for example,

1

3!

Z Z Z
[ff112(�1; �2; �3) + f112(�2; �1; �3)gu1(t� �1)u1(t� �2)u2(t� �3)

ff112(�1; �3; �2) + f112(�3; �1; �2)gu1(t� �1)u2(t� �2)u1(t� �3)

ff112(�2; �3; �1) + f112(�3; �2; �1)gu2(t� �1)u1(t� �2)u1(t� �3)]d�1d�2d�3 :

These terms are all the same. The �rst property is that symmetrization does not alter the
operator.

(ii) For the second property consider,

ef i1;��� ;iNN (�1; � � � ; �N )ui1(t� �1) � � �uiN (t� �N )

=
1

N !

X
�

f
i�(1);��� ;i�(N)
N (��(1); � � � ; ��(N))ui1(t� �1) � � �uiN (t� �N ) : (B-6)
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Also ef i�(1);��� ;i�(N)N (�1; � � � ; �N )ui�(1)(t� �1) � � �ui�(N)(t� �N )

=
1

N !

X
�

f
i�(�(1));��� ;i�(�(N))
N (��(1); � � � ; ��(N))ui�(1)(t� �1) � � �ui�(N)(t� �N ) : (B-7)

Show (B-6) equals (B-7) (this is the second property). Take a particular term out of (B-6), that
is, �x �,

f
i�(1);��� ;i�(N)
N (��(1); � � � ; ��(N))ui1(t� �1) � � �uiN (t� �N ) :

There exists �0 such that � = �0�. Take this term out of (B-7)

f
i�0�(1);��� ;i�0�(N)
N (��0(1); � � � ; ��0(N))ui�(1)(t� �1) � � �ui�(N)(t� �N )

= f
i�(1);��� ;i�(N)
N (��0���1(1); � � � ; ��0���1(N))ui�(1)(t� �1) � � �ui�(N)(t� �N )

= f
i�(1);��� ;i�(N)
N (����1(1); � � � ; ����1(N))ui�(1)(t� �1) � � �ui�(N)(t� �N ) :

Let ��(1) = �1; � � � ; ��(N) = �N , then ����1(1) = ��(1); � � � ; ����1(N) = ��(N). Hence,

= f
i�(1);��� ;i�(N)
N (��(1); � � � ; ��(N))ui�(1)(t� ��(1)) � � �ui�(N)(t� ��(N)) :

Since � is 1 to 1,

= f
i�(1);��� ;i�(N)
N (��(1); � � � ; ��(N))ui1(t� �1) � � �uiN (t� �N ) :

As an example, let N = 6 and fi1; i2; i3; i4; i5; i6g = f1; 2; 3; 4; 5; 6g. Let the permutations be

1 2 3 4 5 6
� 2 1 3 5 4 6
� 3 4 6 5 2 1
��1 2 1 3 5 4 6
��1 6 5 1 2 4 3
���1 5 6 1 4 2 3

:

Then, using ��(i) = �i, �1 = �3, �2 = �4, �3 = �6, �4 = �5, �5 = �2, �6 = �1. Computing,

��(1) = �2 ; ��(3) = �3 ; ��(5) = �4
��(2) = �1 ; ��(4) = �5 ; ��(6) = �6

:

Then,
����1(1) = �5 = �2 = ��(1) ����1(4) = �4 = �5 = ��(4)
����1(2) = �6 = �1 = ��(2) ����1(5) = �2 = �4 = ��(5)
����1(3) = �1 = �3 = ��(3) ����1(6) = �3 = �6 = ��(6)

:
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As a second example, try a di¤erent � with the same �:

1 2 3 4 5 6
� 4 2 1 5 3 6
� 3 4 6 5 2 1
��1 3 2 5 1 4 6
��1 6 5 1 2 4 3
���1 2 5 6 4 1 3

:

Computing,
��(1) = �4 ; ��(3) = �1 ; ��(5) = �3
��(2) = �2 ; ��(4) = �5 ; ��(6) = �6

:

Then,
����1(1) = �2 = �4 = ��(1) ����1(4) = �4 = �5 = ��(4)
����1(2) = �5 = �2 = ��(2) ����1(5) = �1 = �3 = ��(5)
����1(3) = �6 = �1 = ��(3) ����1(6) = �3 = �6 = ��(6)

:

The �rst property shows that the proposed formula gives the symmetrization and the second
property is the one needed in the development.

Integral Operator Case

[�u0(v0;1)](s) = [F (u0+! v0;1)](s)

=

Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN=1

ef i1;��� ;iNN (�1; � � � ; �N )(ui1+! vi1)(s� �1)

� � � (uiN+! viN )(s� �N )d�1 � � � d�N :

The second system is
[�w0 (v0;1)](s) = [G(w0+! v0;1)](s)

=

Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN=1

egi1;��� ;iNN (�1; � � � ; �N )(wi1+! vi1)(s� �1)

� � � (wiN+! viN )(s� �N )d�1 � � � d�N :

Now,

[�u0(v0;1)](s) =

Z 1

0
� � �
Z 1

0

ef i1;��� ;i1N (�1; � � � ; �N )(ui1+! vi1)(s� �1)

� � � (ui1+! vi1)(s� �N )d�1 � � � d�N

+ � � �+
Z 1

0
� � �
Z 1

0

ef iM ;��� ;iMN (�1; � � � ; �N )(uiM+! viM )(s� �1)

� � � (uiM+! viM )(s� �N )d�1 � � � d�N :
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Consider a summand with the di¤erence kernel �eh�Z s

0
� � �
Z s

0

ehi1;��� ;iNN (�1; � � � ; �N )vi1(s� �1) � � � viN (s� �N )d�1 � � � d�N :

The possible input indices i1; � � � ; iN 2 f1; 2; � � � ;Mg may be listed in order in ehi1;��� ;iNN sinceehN is a symmetric kernel. These indices may be repeated, such as
i1 = � � � = ir1 ; ir1+1 = � � � = ir1+r2 ;

� � � ; ir1+r2+���+rI�1+1 = � � � = ir1+r2+���+rI
such that r1 + r2 + � � � + rI = N . Using the �v ! xv�argument, we may focus on a single
summand: (a summand of highest order; i.e., having the greatest number of v0s)

r1z }| {Z
� � �
Z

A1

r2z }| {Z
� � �
Z

A2

� � �

rIz }| {Z
� � �
Z

AI

ehi1;��� ;iNN (�1; � � � ; �N )d�1 � � � d�N = 0 (B-8)

where the A0si are intervals as in the scalar case. For the partitions A1; A2; � � � ; AI�1 �xed, we
use the technique used in the homogeneous scalar case on the Ith (last) partition to show that

r1z }| {Z
� � �
Z

A1

r2z }| {Z
� � �
Z

A2

� � �

rIz }| {Z
� � �
Z

AI;1���AI;rI

ehi1;��� ;iNN (�1; � � � ; �N )d�1 � � � d�N = 0 : (B-9)

We move to the I � 1th partition. We repeat the same procedure. Finally, we �nd
r1z }| {Z
� � �
Z

A1;1���A1;r1

r2z }| {Z
� � �
Z

A2;1���A2;r2

� � �

rIz }| {Z
� � �
Z

AI;1���AI;rI

ehi1;��� ;iNN (�1; � � � ; �N )d�1 � � � d�N = 0 :

Going from (B-8) to (B-9) is analogous to going from (B-1) to (B-2) in the scalar case. Sinceef and eg are continuous, eh = 0, so we have ef = eg.
Nth Order Vector Polynomial Case

[F (u0+! v0;1)](s) =

Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN=1

ef i1;��� ;iNN (�1; � � � ; �N )(ui1+! vi1)(s� �1)

� � � (uiN+! viN )(s� �N )d�1 � � � d�N

+

Z 1

0
� � �
Z 1

0

MX
i1;��� ;iN�1=1

ef i1;��� ;iN�1N (�1; � � � ; �N�1)(ui1+! vi1)(s� �1)
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� � � (uiN�1+! viN�1)(s� �N�1)d�1 � � � d�N�1
+ � � �

+

Z 1

0

Z 1

0

MX
i1;i2=1

ef i1;i2N (�1; �2)(ui1+! vi1)(s� �1)(ui2+! vi2)(s� �2)d�1d�2

+

Z 1

0

MX
i=1

ef iN (�)(ui+! vi)(s� �)d� + f0 :

As with the scalar case, we start with the higher order terms and work toward the lower
order terms. As before, we set up two systems, one with kernel �ef�and one with kernel �eg�.
For the di¤erence between the two, we use the kernel �eh�. It is obvious by what has already
been done, that the ehi1;��� ;iNN terms are zero. Consider an N�1 degree term: Fix a set of indices
i1; i2; � � � ; iN�1.Z s

0
� � �
Z s

0

ehi1;��� ;iN�1N�1 (�1; � � � ; �N�1)vi1(s� �1) � � � viN�1(s� �N�1)d�1 � � � d�N�1

+
X
iN

�Z 1

s

Z s

0
� � �
Z s

0

ef i1;��� ;iN�1;iNN (�1; � � � ; �N )vi1(s� �1) � � � viN�1(s� �N�1)

uiN (s� �N )d�1 � � � d�N

�
Z 1

s

Z s

0
� � �
Z s

0
egi1;��� ;iN�1;iNN (�1; � � � ; �N )vi1(s� �1) � � � viN�1(s� �N�1)

wiN (s� �N )d�1 � � � d�Ng :

The sum is over all possible iN . Letting z = u� w and using the polynomial argumentZ s

0
� � �
Z s

0

8<:ehi1;��� ;iN�1N�1 (�1; � � � ; �N�1) +
X
iN

Z 1

s

ef i1;��� ;iN�1;iNN (�1; � � � ; �N )z(s� �N )d�N

9=;
vi1(s� �1) � � � viN�1(s� �N�1)d�1 � � � d�N�1 = 0 :

If the terms inside the parentheses are continuous,

ehi1;��� ;iN�1N�1 (�1; � � � ; �N�1) = �
X
iN

Z 1

s

ef i1;��� ;iN�1;iNN (�1; � � � ; �N )z(s� �N )d�N :

The same limit argument used in the scalar case shows that the RHS is zero; hence,

ehi1;��� ;iN�1N�1 (�1; � � � ; �N�1) = 0 :

Looking at what has been done so far and at the scalar case, it may be found that the kernels
for the lower degree terms are zero as well. The continuity conditions are summarized below:
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Z 1

s

ef i1;��� ;iNN (�1; � � � ; �N )ziN (s� �N )d�NZ 1

s

Z 1

s

ef i1;��� ;iNN (�1; � � � ; �N )ziN�1;iN (s� �N�1; s� �N )d�N�1d�N

...Z 1

s
� � �
Z 1

s

ef i1;��� ;iNN (�1; � � � ; �N )zi2;��� ;iN (s� �2; � � � ; s� �N )d�2 � � � d�N

are all continuous. Similarly for the lower degree terms. Su¢ cient conditions for continuity of
these terms are similar to before; the Lebesgue Dominated Convergence Theorem is used. Also
as before, the kernels need to be absolutely integrable in the polynomial case.
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APPENDIX C

ON SHIFT DIFFERENTIABILITY OF TIME FUNCTIONS
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In this appendix, we present conditions that imply the shift di¤erentiability of a space of time
functions. NSWCDD�s publications format guide requires that appendices be self-contained,
so we repeat here the de�nitions of �tted families (FFs) of time functions and other relevant
de�nitions from the main text of this report.

De�nition C-1 ([C-1]) Let L = L(<; E) be a linear space of time functions from < into
a Banach space E such that any translate of a function in L is also a function in L. Let
N = fk�ks;t ;�1 < s < t < 1g be a family of seminorms on L satisfying the following
conditions:

(1) For f1; f2 2 L, if f1(�) = f2(�) for s < � � t then kf1 � f2ks;t = 0.
(2) Let L� denote shift to the left by � . For all f 2 L, kL�fks��;t�� = kfks;t.
(3) Let r < s < t. Then for all f 2 L, kfks;t � kfkr;t.
(4) Let r < s < t. Then for all f 2 L, kfkr;t � kfkr;s + kfks;t.
(5) There exists 0 < � � 1 and K � 1 such that if 0 < t� r � � and r < s < t, then for

all f 2 L, kfkr;s � K kfkr;t.
The pair (L;N ) is called a �tted family of seminorms on L. The normed linear space formed
from equivalence classes of functions in L with norm k�ks;t is denoted As;t. The elements of
As;t are the equivalence classes determined by: f � g, f; g 2 L if and only if kf � gks;t = 0.
They are denoted us;t, ys;t, etc. The set fAs;tg, �1 < s < t <1, is the FF of normed linear
spaces given by (L;N ).

A FF (L;N ) and fAs;tg, �1 < s < t <1, can be augmented to include k�k�1;t by taking
the limit s! �1, since by (3) of De�nition C-1 kfks;t is monotone nondecreasing as s! �1
with t �xed. Let L0 = ff 2 Lj lims!�1 kfks;t <1; t 2 <g. For f 2 L0, de�ne

kfkt
�
= lim
s!�1

kfks;t = kfk�1;t : (C-1)

Let L00 = ff 2 L0j supt kfkt <1g. For f 2 L00 de�ne

kfks;1
�
= sup

t>s
kfks;t ; �1 � s : (C-2)

For f 2 L00 we put
kfk �= sup

t2<
kfkt = kfk�1;1 : (C-3)

The normed linear space consisting of equivalence classes of functions in L00 with the norm
(C-3) is called the bounding space A for the family fAs;tg.

De�nition C-2 The space of time functions U is shift di¤erentiable if for all u 2 U

Lhu = u+ h � d+ e(h) (C-4)

where d; e(h) 2 U and limh!0 ke(h)kt =h = 0 for all t 2 <. d is the shift derivative of u.

Shift continuity, as it is stated in [C-2], is the space U is shift continuous if limh!0 ku� Lhuks;t
= 0 for all u for which the norm is de�ned and for all �1 � s < t <1. From De�nition C-2,
we see shift di¤erentiability implies shift continuity.
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Before going to our result, we start out by showing that di¤erentiability or continuity is not
a requirement for shift di¤erentiability by these two examples:

Example C-3 Let the basic function space L(<;<) be the set of real-valued functions on < that
are bounded and piecewise continuous (continuous except possibly at a �nite number of points
on any �nite interval and with �nite left- and right-hand limits at these points.) The family of
norms is given by the L2 norm kfks;t =

R t
s jf(�)j

2d� , f 2 L(<;<). The (usually input) space U
is either the bounding space A for this family or a shift-invariant subset thereof. De�ne u and
d by

u (t) =

8>><>>:
0; t � �1; t > 11
t+ 1; �1 < t � 0
1; 0 < t � 10
�t+ 11; 10 < t � 11

d (t) =

8>>>><>>>>:
0; t � �1
1; �1 < t � 0
0; 0 < t � 10
�1; 10 < t � 11
0; 11 < t

.

We observe that u and d are in L2. We note that u is not di¤erentiable; however, we show
below that u is shift di¤erentiable. We have that (with 0 < h < 10)

Lhu (t) =

8>>>><>>>>:
0; t � �1� h
t+ (1 + h) ; �1� h < t � �h
1; �h < t � 10� h
�t+ (11� h) ; 10� h < t � 11� h
0; 11� h < t

.

Then we calculate

(Lhu� u� h � d) (t) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

0; t � �1� h
t+ (1 + h) ; �1� h < t � �1
0; �1 < t � �h
� (t+ h) ; �h < t � 0
0; 0 < t � 10� h
�t+ (10� h) ; 10� h < t � 10
0; 10 < t � 11� h
t� (11� h) ; 11� h < t � 11
0; 11 < t

.

Noting that e = (Lhu� u� h � d). We �rst calculate

kLhu� u� h � dk2 = 2 � 2 �
Z 0

�h
t2dt =

4 � h3
3
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then

lim
h!0

ke (h)k
h

= lim
h!0

r
4 � h3
3
h

=
2p
3
lim
h!0

h3=2

h
= 0 .

Example C-4 Let the basic function space L(<;<) for inputs be the set of real-valued functions
on < that are bounded and piecewise continuous (continuous except possibly at a �nite number
of points on any �nite interval and with �nite left- and right-hand limits at these points). The
family of norms is given by L1 norm kfks;t =

R t
s jf(�)jd� , f 2 L(<;<). The (usual input) space

U is either the bounding space A for this family or a shift-invariant subset thereof. This time
let u be the boxcar step and d be the addition of delta functions, respectively,

u (t) =

�
1; 0 < t � 10
0; elsewhere

� (t) =

�
0; t 6= 0
unde�ned, t = 0

with Z 1

�1
� (�) d� = 1 .

(The usual symbol for the delta function is �.)

d (t) = � (t)� � (t� 10)

We note that u is not continuous; however, we show below that u is shift di¤erentiable. We
have that (with h > 0)

Lhu (t) =

�
1; �h < t � 10� h
0; elsewhere

.

Then we calculate e = (Lhu� u� h � d). First de�ne g by

[g (h)] (t) = (Lhu� u) (t) =

8>>>><>>>>:
0; t � �h
1; �h < t � 0
0; 0 < t � 10� h
�1; 10� h < t � 10
0; 10 < t

.

Then
[e (h)] (t) = [g (h)] (t)� hd (t) = [g (h)] (t)� h� (t) + h� (t� 10) .

Looking at the essential property e must have,

lim
h!0

k[e (h)] (t)k
h

= lim
h!0

Z 1

�1

j[e (h)] (�)j
h

d�

= lim
h!0

1

h

�Z 0

�h
1 � d� �

Z 10

10�h
1 � d� �

Z 1

�1
h � d (�) d�

�

C-5
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= lim
h!0

1

h

�Z 0

�h
1 � d� � h �

Z 1

�1
� (�) d�

�
� lim
h!0

1

h

�Z 10

10�h
1 � d� � h �

Z 1

�1
� (� � 10) d�

�
= 2 � lim

h!0

�
1

h
fh� hg

�
= 2 � lim

h!0

�
1

h
� 0
�
= 2 � lim

h!0
[0] = 0 .

The next proposition gives su¢ cient conditions for shift di¤erentiability.

Proposition C-5 Let L = L(<; E) be a linear space of time functions. Use the Lp norm. For
f 2 L, let f 0 (t) be the derivative, that is,

f 0 (t) = lim
h!0

f (t+ h)� f (t)
h

(C-5)

for all t 2 <. De�ne
e (t; h) � f (t+ h)� f (t)� hf 0 (t)

for all t, h 2 <. Assume e (t; �) is measurable. Assume there exists � (t) 2 L1 (�1; T ] such thate (t; h)h

 � � (t) (C-6)

for all t, h 2 <. Then

Lhf (t) = f (t+ h) = f (t) + hf
0 (t) + e (t; h) (C-7)

with

lim
h!0

ke (h)kT
h

= lim
h!0

1

h
p

sZ T

�1
ke (t; h)kp dt = lim

h!0
p

sZ T

�1

e (t; h)h

p dt
using (C-6) and the Lebesgue Dominated Convergence Theorem,

= p

sZ T

�1
lim
h!0

e (t; h)h

p dt = p

sZ T

�1

 limh!0 e (t; h)h

p dt = 0 .
So, f 0 is the shift derivative of f . If the limit in (C-5) and the bound in (C-6) are almost
everywhere, then the result is in terms of the eqivalence classes u 2 U ,

Lhu = u+ hd+ e (h) . (C-8)
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APPENDIX D

ON SHIFT DIFFERENTIABILITY OF SYSTEM TRAJECTORIES
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In this appendix, su¢ cient conditions for a system trajectory to be shift-di¤erentiable are
considered. That the system be time-invariant is a straightforward su¢ cient condition. For
time-varying systems, our conditions are based on a hypothesis SG, de�ned below, and the
semigroup it de�nes being strongly continuous. NSWCDD�s publications format guide requires
that appendices be self-contained, so we recover here several de�nitions from the main text of
this report.

An input-output system is denoted (Y; F; U), where F is a mapping from an input space
U to an output space Y , and where U and Y are translation-invariant spaces of vector-valued
time functions. The input and output space metrics are set up by seminorms referred to as
�tted families (FFs) of seminorms. The notation kus;tks;t indicates the norm of the input u over
the interval of time (s; t]. Us;t is the space of inputs over the same interval. FFs were initially
described in [D-1].

De�nition D-1 [D-1] Let L = L(<; E) be a linear space of time functions from < into a
Banach space E such that any translate of a function in L is also a function in L. Let N =
fk�ks;t ;�1 < s < t <1g be a family of seminorms on L satisfying the following conditions:

(1) For f1; f2 2 L, if f1(�) = f2(�) for s < � � t then kf1 � f2ks;t = 0.
(2) Let L� denote shift to the left by � . For all f 2 L, kL�fks��;t�� = kfks;t.
(3) Let r < s < t. Then for all f 2 L, kfks;t � kfkr;t.
(4) Let r < s < t. Then for all f 2 L, kfkr;t � kfkr;s + kfks;t.
(5) There exists 0 < � � 1 and K � 1 such that if 0 < t� r � � and r < s < t, then for

all f 2 L, kfkr;s � K kfkr;t.
The pair (L;N ) is called a FF of seminorms on L. The normed linear space formed from
equivalence classes of functions in L with norm k�ks;t is denoted As;t. The elements of As;t are
the equivalence classes determined by: f � g, f; g 2 L if and only if kf � gks;t = 0. They are
denoted us;t, ys;t, etc. The set fAs;tg, �1 < s < t < 1, is the FF of normed linear spaces
given by (L;N ).

We also de�ne kuk�1;t = lims!�1 kuks;t = kukt. Also, kfks;1 = supt>s kfks;t, and kfk =
supt kfkt . A mapping F : U ! Y is called a global input-output mapping.

De�nition D-2 Let (Y; F; U) be an input-output system. F is a causal mapping and (Y; F; U)
is a causal system if and only if for all t and for all u; v 2 U such that ku� vkt = 0; it follows
that kF (u)� F (v)kt = 0.

If F satis�es this de�nition, it determines a mapping from Ut into Bt, denoted eFt, that
satis�es

 eFtut � (Fu)t
t
= 0. We call eFt a truncated input-output mapping, and de�ne the

centered truncated input-output mapping Ft : U0 ! Y0 by Ft(u0)
�
= Lt eFtRt(u0), where Rt �= L�t

is the right-shift by t. The norms we use here for input-output mappings F , eFt, and Ft are the
N -power norms, denoted [] � [].

Let � be a mapping from a normed linear space X into a normed linear space Y . For any
nonnegative integer N , the N -power norm for � is given by

[]�[]
�
= sup
x2X

k�(x)k
1 + kxkN

(D-1)
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when the right side exists. We say � is bounded (in N�power norm) if []�[] <1. Let FN (X;Y )
be the normed linear space of all mappings � : X ! Y with []�[] < 1, and CN (X;Y ) be the
normed linear subspace of FN (X;Y ) of all continuous �.

De�nition D-3 A system trajectory is a shift di¤erentiable system trajectory t! Ft if

LhFRh = F + h �G+H(h) (D-2)

where G 2 CN (U; Y ) and H(h) 2 CN (U; Y ) and such that

lim
h!0

[]H(h)t[]

h
= 0 for all t 2 <� (D-3)

We de�ne the truncation mapping �t on the space of systems CN (X;Y ) by �tF = Ft.

De�nition D-4 We say F = f(Y; F; U)g satis�es condition (SG) if for all F 1; F 2 2 F, �tF 1 =
�sF

2 for some t; s 2 < implies �t+aF 1 = �s+aF 2 for all a � 0.

Now, de�ne an operator � (s; t) for s; t 2 <, s � t, with domain Fs and counter-domain Ft
by

� (s; t)Fs = �t � ��1s Fs :

If condition (SG) is satis�ed, � (s; t) is a well-de�ned operator that is linear on its domain.
In fact, � only depends on (t� s). The family of operators f� (�) ; � � 0g is a one-parameter
semigroup of operators, linear on the domain speci�ed.

Lemma D-5 [D-2, Lemma 5.5.1] Let F = f(Y; F; U)g be as described in the preceding para-
graph. Let f� (�) ; � > 0g be the semigroup de�ned by condition (SG). Assume that f� (�) ; � > 0g
is a strongly continuous semigroup of bounded linear transformations with in�nitesimal gener-
ator A. For F 2 F, if Ft 2 Domain (A) for all t and

lim
h!0

� (h)Ft � Ft
h

�AFt = 0 (D-4)

uniformly in t, then the system trajectory t! Ft is shift di¤erentiable.

Proof : Consider the system trajectory t ! Ft of the input-output system (Y; F; U). Fix
h > 0 and consider the time function t ! � (h)Ft or t ! Ft+h, which is a time function in
L(<; CN (U0; Y0)). The time function t ! Ft+h is actually de�ned by the causal input-output
system (Y;LhFRh; U). By the uniform convergence in (D-4), the sequence�

L(1=n)FR(1=n) � F
(1=n)

�+1
n=1

is Cauchy in the metric of CN (X;Y ). Let this sequence converge to G 2 CN (X;Y ). (The
completeness of CN (X;Y ) is considered in Lemma A.1 of [D-2].) Note that for all t 2 <,
A � Ft = Gt. For each h 2 <, de�ne H (h) 2 CN (U0; Y0) by

H (h) = LhFRh � F � hG

D-4
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It is seen that limh!0H (h) =h = 0; therefore, the system trajectory t! Ft is shift di¤erentiable.
�

Lemma D-5 gives (D-3) is uniform in t.
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